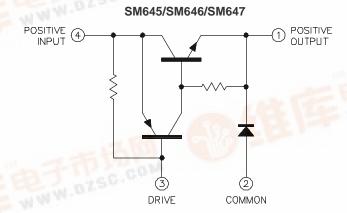


SWITCHING REGULATOR POWER OUTPUT STAGES

DESCRIPTION

The SM645/646/647 series of Power Output Stages are especially designed to be driven with standard PWM integrated circuits to form an efficient switching power supply. The SM645, SM646 and SM647 are optimized for non-isolated Buck and Buck-Boost application. The hybrid circuit construction utilizes thick film resistors on a beryllia substrate for maximum thermal conductivity and resultant low thermal impedance. All of the active elements in the hybrid are fully passivated.


FEATURES

- Equivalent to the Unitrode PIC 645, 646, 647
- 15A current capability
- Cost saving design reduces size, improves efficiency, reduces noise and RFI
- High operating frequency (to > 100KHz) results in smaller inductor-capacitor filter and improved power supply response time
- High operating efficiency at 7A typical performance -Rise and fall time < 300ns
 Efficiency > 85%

HIGH RELIABILITY FEATURES

♦ Available with high reliability processing

FUNCTIONAL DIAGRAM

D. Rev 1.1 2/94 LINFINITY Microelectronics Inc.

_					
	ABSOLUTE MAXIMUM RATINGS (Note 1)	SM645	SM646	SM647	
	Input Voltage, V ₄₋₂	60V	80V	100V	
	Output Voltage, V_{1-2}	60v	80v	100V	
	Drive Input Reverse Voltage, V ₃₋₄	5V	5V	5V	
	Continuous Output Current, I,		15A	15A	
	Peak Output Current		20A	20A	
	Drive Current, I ₃		-0.4A	-0.4A	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Operatin Herme Storage	Temperature I	e) Range	
	THERMAL DATA				
		ote B. Tl th in g	ne above numb lermal resistar g configuratio uidelines for th	ers for θ_{JC} ance of the point. The $\theta_{J/D}$ ne thermal p	ation: $T_J = T_A + (P_D \times \theta_{JA})$. The maximums for the limiting backage in a standard mounting numbers are meant to be derformance of the device/pcabove assume no ambient

RECOMMENDED OPERATING CONDITIONS (Note 2)

	SM645	SM646	SM647
Input Voltage, V ₄₋₂	50V	70V	90V
Output Voltage, V ₁₋₂	50v	70v	90V
Drive Input Reverse Voltage, V ₃₋₄	4V	4V	4V
Output Current, I,	13A	13A	13A
Drive Current, I ₃	-0.3A	-0.3A	-0.3A

Operating Ambient Temperature Range SM6XXK0°C to 70°C SM6XXHRK55°C to 125°C

airflow.

Note 2. Range over which the device is functional.

ELECTRICAL CHARACTERISTICS

(Unless otherwise specified, these specifications apply for the operating ambient temperature of $T_A = 25^{\circ}C$. Low duty cycle pulse testing techniques are used which maintains junction and case temperatures equal to the ambient temperature.)

Damanatan	Tool Conditions	SG645/646/647			l lade
Parameter	Test Conditions		Тур.	Max.	Units
On-State Voltage (Note 3)	$I_4 = 7A(-7A), I_3 = -30mA(30mA)$		1.0	1.5	V
	$I_4 = 15A(-15A), I_3 = -30mA(30mA)$		2.5	3.5	V
Diode Forward Voltage (Note 3)	$I_{\Delta} = 7A(-7A)$		0.85	1.25	V
	$I_{A} = 15A(-15A)$		0.95	1.75	V
Off-State Current	\vec{V}_{A} = Rated input voltage		0.1	10	μΑ
	V_4 = Rated input voltage, T_A = 125°C		10		μΑ
Diode Reverse Current	V ₁ = Rated output voltage		1.0	10	μΑ
	V ₁ = Rated output voltage, T _A = 125°C		500		μΑ

Note 3. Pulse test: Duration = $300\mu s$, Duty Cycle $\leq 2\%$.

4/90 Rev 1.1 2/94 LINFINITY Microelectronics Inc.

ELECTRICAL CHARACTERISTICS (continued)

Parameter	Test Conditions	SG645/646/647			Units	
Farameter		Min.	Тур.	Max.	Units	
Dynamic Characteristics (See Figures 1 & 2) (Notes 4 & 5)						
Current Delay Time				35	60	ns
Current Rise Time				65	150	ns
Voltage Rise Time				40	60	ns
Voltage Storage Time				700		ns
Voltage Fall Time				70	175	ns
Current Fall Time				175	300	ns
Efficiency (Note 5)				85		%

AC TEST CIRCUIT AND SWITCHING TIME WAVEFORMS (Note 6)

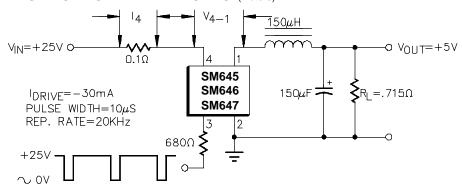


FIGURE 1 - SM645/646/647 SWITCHING SPEED CIRCUIT

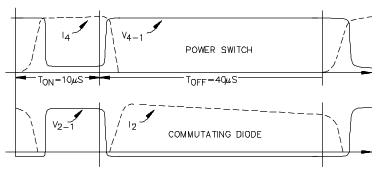


FIGURE 2 - SM645/646/647 SWITCHING WAVEFORMS

Note 4. In switching an inductive load, the current will lead the voltage on turn-on and lag the voltage on turn-off (see Figure 2). Therefore, Voltage

Delay Time $(t_{DV}) \cong t_{ci} + t_{ri}$ and Current Storage Time $(t_{si}) \cong t_{sv} + t_{tv}$. Note 5. The efficiency is a measure of internal power losses and is equal to Output Power divided by Input Power. The switching speed circuit of Figure 1, in which the efficiency measured, is representaive of typical operating conditions for the SM600 series switching regulators.

APPLICATION CIRCUITS

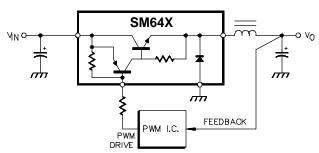


FIGURE 3 - STEP DOWN (BUCK) CONVERTER

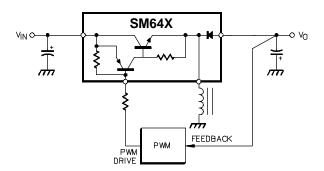


FIGURE 4 - NEGATIVE OUTPUT DOWN/UP (BUCK-BOOST) CONVERTER

4/90 Rev 1.1 2/94 **LINFINITY** Microelectronics Inc

SM645/SM646/SM647

CONNECTION DIAGRAMS & ORDERING INFORMATION (See Note Below)

Package	Part No.	Ambient Temperature Range	Connection Diagram
4-TERMINAL TO-3 METAL CAN K - PACKAGE	SM645K SM645HRK SM646K SM646HRK SM647K SM647HRK	0°C to 70°C -55°C to 125°C 0°C to 70°C -55°C to 125°C 0°C to 70°C -55°C to 125°C	DRIVE POSITIVE INPUT CASE IS COMMON POSITIVE OUTPUT

Note 1. All packages are viewed from the top.
2. Consult factory for additional screening available.

4/90 Rev 1.1 2/94 LINFINITY Microelectronics Inc.