Supertex inc.

Dual High Voltage Isolated MOSFET Driver

Ordering Information

8-Pin Narrow Body SOIC
HT0440LG
THE DISC

Features

- ±400V input to output isolation
- ±700V isolation between outputs
- No external voltage supply required
- Dual isolated output drivers
- Option of internal or external clock

Applications

- Telecommunications
- Modems
- Solid state relays
- High side switches
- High end audio switches
- **Avionics**
- ATE

Absolute Maximum Ratings¹

Input to Output Isolation Voltage, V _{iso}	±400V
Logic Input Voltage, V _A , V _B	-0.5 to +7.0V
Operating Temperature	–40°C to +85°C
Storage Temperature	–55°C to +150°C
Soldering Temperature ²	300°C

Note:

1. All voltages are referenced to ground.

13/01dzsc.com

WWW.DZSC 2. Distance of 1.6mm from case for 10 seconds.

For detailed circuit and application information, please refecto application note #AN-D26.

General Description

The Supertex HT0440 is a dual high voltage isolated driver utilizing Supertex's proprietary HVCMOS® technology. It is designed to drive discrete MOSFETs configured as bi-directional or unidirectional switches. It can drive N-channel MOSFETs as high side switches up to 400V. The HT0440 generates two independent DC isolated voltages to the outputs, V_{OUTA} and V_{OUTB} when logic inputs A and B are at logic high. The internal clock of the HT0440 can be disabled by applying an external clock signal to the CLK pin. This allows the power dissipation and AC characteristics to be tailored to meet specific needs. The CLK pin should be connected to ground when not in use. The HT0440 does not require any external power supplies. The internal supply voltage is supplied by either of the two logic inputs A or B when they are at logic high.

Pin Configuration

Electrical Characteristics

(Over recommended operating conditions, $T_{A} = 25^{\circ}C$ unless otherwise specified)

DC Characteristics

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
I _{IHA} + I _{IHB}	Total logic high input current			300	μA	$V_{A} = 3.5V, V_{B} = 3.5V, CLK = 0V$
				500	μΑ	V _A = 3.5V, V _B = 3.5V, CLK = 500KHz
				2.0	mA	$V_A = 3.5V, V_B = 3.5V,$ CLK = 2.0MHz
				1.0	mA	$V_{A} = 5.5V, V_{B} = 5.5V, CLK = 0V$
				2.0	mA	$V_A = 5.5V, V_B = 5.5V,$ CLK = 500KHz
V _{outa} , V _{outb}	Output Voltage	6.0			V	$V_A = 3.15V, V_B = 3.15V,$ CLK = 0V, no load
		5.0			V	$V_A = 3.15V, V_B = 3.15V,$ CLK = 500KHz, no load
		6.0			V	$V_A = 3.15V, V_B = 3.15V,$ CLK = 2.0MHz, no load
		10.0			V	$V_A = 4.5V$, $V_B = 4.5V$, CLK = 0V, no load
		8.0			V	$V_A = 4.5V$, $V_B = 4.5V$, CLK = 500KHz, no load
I _{ILA}	Logic low input A current			10	μA	$V_A = 0.5V, V_B = high$
I _{ILB}	Logic low input B current			10	μA	$V_A = high, V_B = 0.5V$
I _{ILQ}	Quiescent current			10	μA	$V_{\rm A} = 0.5 V, V_{\rm B} = 0.5 V$
V _{ISO}	Input to output isolation voltage	±400			V	
V _{CISO}	Output to output isolation voltage	±700			V	

AC Characteristics

Symbol	Parameter	Min	Тур	Мах	Unit	Conditions
t _{d(ON)}	Turn on delay time			50	μS	See timing diagram and test circuit
t _r	Rise time			650	μs	$CLK = 0V, C_{L} = 600pF$
t _{d(OFF)}	Turn off delay time			150	μs	
t _f	Fall time			3.0	ms	

Recommended Conditions

Symbol	Parameter	Min	Тур	Мах	Unit	Conditions
CLK	External clock frequency	0.5		2.0	MHz	
V _{IHCLK}	Clock input high voltage	3.15		5.5	V	
V _{ILCLK}	Clock input low voltage	0		0.5	V	
V _{IH}	Logic input high voltage	3.15		5.5	V	
V _{IL}	Logic input low voltage	0		0.5	V	
T _A	Operating temperature	-40		+85	°C	

Truth Table

Α	В	CLK	V _{OUT} A	V _{OUT} B	Internal Clock
0	0	0	Off	Off	Off
0		0	Off	On	On
	0	0	On	Off	On
1	1	0	On	On	On
0	0	Clk	Off	Off	Off
0		Clk	Off	On	Off
	0	Clk	On	Off	Off
1	1	Clk	On	On	Off

Block Diagram

Timing Diagram

HT0440

Test Circuit

1235 Bordeaux Drive, Sunnyvale, CA 94089

12/13/010