32－Channel Serial To Parallel Converter With Open Drain Outputs

Ordering Information

Device	Package Options			
	44 J－Lead Quad Ceramic Chip Carrier	44 J－Lead Quad Plastic Chip Carrier	44 Lead Quad Plastic Gullwing	Die
	HV5122DJ	HV5122PJ	HV5122PG	HV5122X
HV5222	HV5222DJ	HV5222PJ	HV5222PG	HV5222X

Features

\square Processed with $\mathrm{HVCMOS}^{\circledR}$ technology
\square Output voltages to 225 V using a ramped supply voltage
\square Sink current minimum 100 mA
\square Shift register speed 8 MHz
\square Strobe and enable inputs
\square CMOS compatible inputs
\square Forward and reverse shifting options
\square 44－lead ceramic surface mount package
$\square \mathrm{Hi}$－Rel processing available

Absolute Maximum Ratings ${ }^{1}$

Supply voltage， V_{DD}	-0.5 V to +15 V	
Output voltage， V_{PP}	-0.5 V to +250 V	
Logic input levels	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$	
Ground current ${ }^{2}$		1.5 A
Continuous total power dissipation 3	Plastic Ceramic	1200 mW
	1500 mW	
Operating temperature range	Plastic $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Ceramic -55 to $+125^{\circ} \mathrm{C}$ Storage temperature range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead temperature $1.6 \mathrm{~mm}(1 / 16$ inch $)$ $260^{\circ} \mathrm{C}$ from case for 10 seconds	

Notes：

1．All voltages are referenced to GND．
2．Duty cycle is limited by the total power dissipated in the package．
3．For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to maximum operating （9）（e）temperature at $20 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for plasitc and at $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ceramic．

General Description

The HV51 and HV52 are low voltage serial to high voltage parallel converters with open drain outputs．These devices have been designed for use as drivers for AC electroluminescent displays． They can also be used in any application requiring multiple output high voltage current sinking capabilities such as driving inkjet and electrostatic print heads，plasma panels，vacuum fluorescent，or large matrix LCD displays．
These devices consist of a 32－bit shift register and control logic to perform the Output Enable and All－ON functions．Data is shifted through the shift register on the high to low transition of the clock． The HV51 shifts in the counterclockwise direction when viewed from the top of the package and the HV52 shifts in the clockwise direction．A data output buffer is provided for cascading devices． This output reflects the current status of the last bit of the shift register．Operation of the shift register is not affected by the OE （Output Enable）or the STR（Strobe）inputs．
The HV51 and HV52 have been designed to be used in systems which either switch off the high voltage supply before changing the state of the high voltage outputs or which limit the current through each output．

Electrical Characteristics (over recommended operating conditions unless noted)
DC Characteristics

Symbol	Parameter		Min	Typ	Max	Units	Conditions
$I_{\text {DD }}$	V_{DD} supply current				15	mA	$\begin{gathered} \mathrm{f}_{\mathrm{CLK}}=8 \mathrm{MHz} \\ \mathrm{~F}_{\mathrm{DATA}}=4 \mathrm{MHz} \end{gathered}$
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current				100	$\mu \mathrm{A}$	All $\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {O(OFF) }}$	Off state output current				10	$\mu \mathrm{A}$	All outputs high All SWS parallel
I_{H}	High-level logic input current				1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IH}}=12 \mathrm{~V}$
$I_{\text {IL }}$	Low-level logic input current				-1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$
V_{OH}	High-level output data out		$\mathrm{V}_{\mathrm{DD}}-1.0 \mathrm{~V}$			V	$\mathrm{I}_{\text {Dout }}=-100 \mu \mathrm{~A}$
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	HV ${ }_{\text {OUT }}$			15.0	V	$\mathrm{I}_{\text {HVout }}=+100 \mathrm{~mA}$
		Data out			1.0	V	$\mathrm{I}_{\text {Dout }}=+100 \mu \mathrm{~A}$
V_{OC}	HV ${ }_{\text {Out }}$ Clamp Voltage				-1.5	V	$\mathrm{I}_{\mathrm{OL}}=-100 \mathrm{~mA}$

AC Characteristics $\left(\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency			8	MHz	
t_{W}	Clock width high or low	62			ns	
t_{SU}	Data set-up time before clock falls	25			ns	
t_{H}	Data hold time after clock falls	10			ns	
t_{ON}	Turn ON time, $\mathrm{HV} \mathrm{V}_{\text {OUT }}$ from strobe			500	ns	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{~K} \Omega$ to 200 V
$\mathrm{t}_{\mathrm{DHL}}$	Delay time clock to data high to low			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\mathrm{DLH}}$	Delay time clock to data low to high			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$

Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Units
V_{DD}	Logic supply voltage	10.8	12	13.2	V
$\mathrm{HV}_{\text {OUT }}$	High voltage output	-0.3		225	V
$\mathrm{~V}_{\mathrm{IH}}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}-2 \mathrm{~V}$		$\mathrm{~V}_{\mathrm{DD}}$	V
V_{IL}	Low-level input voltage	0		2.0	V
$\mathrm{f}_{\mathrm{CLK}}$	Clock frequency			8	MHz
T_{A}	Operating free-air temperature	Plastic	-40		+85
${ }^{\circ} \mathrm{C}$	Ceramic	-55		+125	${ }^{\circ} \mathrm{C}$

Notes:

Power-up sequence should be the following:

1. Connect ground.
2. Apply V_{DD}.
3. Connect all inputs to a known state.

Power-down sequence should be the reverse of the above

Input and Output Equivalent Circuits

Switching Waveforms

Functional Block Diagram

Function Table

Function	Inputs				Outputs		
	Data In	CLK	OE	Strobe	Shift Reg 1 2... 32	$\begin{aligned} & \text { HV Outputs } \\ & 1 \quad 2 \ldots . .32 \end{aligned}$	Data Out
All on	X	X	X	L	* *...*	ON ON...ON	*
All off	X	X	L	H	* *...*	OFF OFF...OFF	*
Load S/R	H or L	\downarrow	L	H	H or L *...*	OFF OFF...OFF	
Output enable	X	H or L	H	H	H or L *...*	ON or OFF *...*	*

Notes:

X = Don't care

* = Dependent on previous stage's state before the last CLK : High to low transition.
$\downarrow=$ High to low transition
$\mathrm{H}=$ High level
L = Low level

Pin Configurations

Package Outline

HV51
44 Pin J-Lead Package

Pin	Function	Pin	Function
1	$\mathrm{HV}_{\text {OUt }} 16$	23	Output Enable
2	$\mathrm{HV}_{\text {OUt }} 17$	24	Clock
3	HV ${ }_{\text {OUt }} 18$	25	GND
4	$\mathrm{HV}_{\text {OUt }} 19$	26	$V_{\text {D }}$
5	$\mathrm{HV}_{\text {OUt }} 20$	27	Stobe
6	$\mathrm{HV}_{\text {OUt }} 21$	28	Data In
7	$\mathrm{HV}_{\text {OUt }} 22$	29	N/C
8	HV ${ }_{\text {OUT }} 23$	30	HV ${ }_{\text {OUT }} 1$
9	$\mathrm{HV}_{\text {OUt }} 24$	31	$\mathrm{HV}_{\text {OUT }}{ }^{2}$
10	HV ${ }_{\text {OUT }} 25$	32	$\mathrm{HV}_{\text {OUT }} 3$
11	HV ${ }_{\text {OUT }} 26$	33	$\mathrm{HV}_{\text {OUT }} 4$
12	HV ${ }_{\text {OUt }} 27$	34	$\mathrm{HV}_{\text {OUT }} 5$
13	HV ${ }_{\text {OUT }} 28$	35	$\mathrm{HV}_{\text {OUT }} 6$
14	HV ${ }_{\text {OUT }} 29$	36	$\mathrm{HV}_{\text {OUT }} 7$
15	$\mathrm{HV}_{\text {OUt }} 30$	37	$\mathrm{HV}_{\text {OUT }} 8$
16	$\mathrm{HV}_{\text {OUt }} 31$	38	$\mathrm{HV}_{\text {OUt }} 9$
17	$\mathrm{HV}_{\text {Out }} 32$	39	HV ${ }_{\text {OUT }} 10$
18	Data Out	40	HV ${ }_{\text {OUT }} 11$
19	N/C	41	HV ${ }_{\text {OUT }} 12$
20	N/C	42	$\mathrm{HV}_{\text {OUT }} 13$
21	N/C	43	HV ${ }_{\text {OUt }} 14$
22	N/C	44	HV OUT 15

top view
44-pin J-Lead Package

Pin Configurations

HV51
44-Pin Quad Plastic Package

Pin	Function	Pin	Function
1	$\mathrm{HV}_{\text {OUT }} 11$	23	Data Out
2	$\mathrm{HV}_{\text {OUT }} 12$	24	$\mathrm{~N} / \mathrm{C}$
3	$\mathrm{HV}_{\text {OUT }} 13$	25	$\mathrm{~N} / \mathrm{C}$
4	$\mathrm{HV}_{\text {OUT }} 14$	26	$\mathrm{~N} / \mathrm{C}$
5	$\mathrm{HV}_{\text {OUT }} 15$	27	$\mathrm{~N} / \mathrm{C}$
6	$\mathrm{HV}_{\text {OUT }} 16$	28	Output Enable
7	$\mathrm{HV}_{\text {OUT }} 17$	29	CLK
8	$\mathrm{HV}_{\text {OUT }} 18$	30	GND
9	$\mathrm{HV}_{\text {OUT }} 19$	31	$\mathrm{~V}_{\text {DD }}$
10	$\mathrm{HV}_{\text {OUT }} 20$	32	Strobe
11	$\mathrm{HV}_{\text {OUT }} 21$	33	Data In
12	$\mathrm{HV}_{\text {OUT }} 22$	34	$\mathrm{~N} / \mathrm{C}$
13	$\mathrm{HV}_{\text {OUT }} 23$	35	HV OUT 1
14	$\mathrm{HV}_{\text {OUT }} 24$	36	HV OUT 2
15	$\mathrm{HV}_{\text {OUT }} 25$	37	$\mathrm{HV}_{\text {OUT }} 3$
16	$\mathrm{HV}_{\text {OUT }} 26$	38	$\mathrm{HV}_{\text {OUT }} 4$
17	$\mathrm{HV}_{\text {OUT }} 27$	39	$\mathrm{HV}_{\text {OUT }} 5$
18	$\mathrm{HV}_{\text {OUT }} 28$	40	$\mathrm{HV}_{\text {OUT }} 6$
19	$\mathrm{HV}_{\text {OUT }} 29$	41	$\mathrm{HV}_{\text {OUT }} 7$
20	$\mathrm{HV}_{\text {OUT }} 30$	42	$\mathrm{HV}_{\text {OUT }} 8$
21	$\mathrm{HV}_{\text {OUT }} 31$	43	$\mathrm{HV}_{\text {OUT }} 9$
22	$\mathrm{HV}_{\text {OUT }} 32$	44	$\mathrm{HV}_{\text {OUT }} 10$

Package Outline

HV52

44-Pin Quad Plastic Package

Pin	Function	Pin	Function
1	$\mathrm{HV}_{\text {OUT }} 22$	23	Data Out
2	$\mathrm{HV}_{\text {OUT }} 21$	24	$\mathrm{~N} / \mathrm{C}$
3	$\mathrm{HV}_{\text {OUT }} 20$	25	$\mathrm{~N} / \mathrm{C}$
4	$\mathrm{HV}_{\text {OUT }} 19$	26	$\mathrm{~N} / \mathrm{C}$
5	$\mathrm{HV}_{\text {OUT }} 18$	27	$\mathrm{~N} / \mathrm{C}$
6	$\mathrm{HV}_{\text {OUT }} 17$	28	Output Enable
7	$\mathrm{HV}_{\text {OUT }} 16$	29	CLK
8	$\mathrm{HV}_{\text {OUT }} 15$	30	GND
9	$\mathrm{HV}_{\text {OUT }} 14$	31	$\mathrm{~V}_{\text {DD }}$
10	$\mathrm{HV}_{\text {OUT }} 13$	32	Strobe
11	$\mathrm{HV}_{\text {OUT }} 12$	33	Data In
12	$\mathrm{HV}_{\text {OUT }} 11$	34	$\mathrm{~N} / \mathrm{C}$
13	$\mathrm{HV}_{\text {OUT }} 10$	35	HV OUT 32
14	$\mathrm{HV}_{\text {OUT }} 9$	36	$\mathrm{HV}_{\text {OUT }} 31$
15	$\mathrm{HV}_{\text {OUT }} 8$	37	$\mathrm{HV}_{\text {OUT }} 30$
16	$\mathrm{HV}_{\text {OUT }} 7$	38	$\mathrm{HV}_{\text {OUT }} 29$
17	$\mathrm{HV}_{\text {OUT }} 6$	39	$\mathrm{HV}_{\text {OUT }} 28$
18	$\mathrm{HV}_{\text {OUT }} 5$	40	$\mathrm{HV}_{\text {OUT }} 27$
19	$\mathrm{HV}_{\text {OUT }} 4$	41	$\mathrm{HV}_{\text {OUT }} 26$
20	$\mathrm{HV}_{\text {OUT }} 3$	42	$\mathrm{HV}_{\text {OUT }} 25$
21	$\mathrm{HV}_{\text {OUT }} 2$	43	$\mathrm{HV}_{\text {OUT }} 24$
22	$\mathrm{HV}_{\text {OUT }} 1$	44	$\mathrm{HV}_{\text {OUT }} 23$

