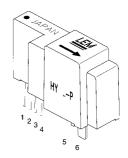


Current Transducers, HY50-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Primary nominal r.m.s. current $I_{PN}(A)$	Primary current measuring range I _P (A)	Primary conductor (mm)	Туре	
50	± 150	1.6 x 3.5	HY 50-P	
v _c s	upply voltage (± 5 %)		± 15	V
I _c C	urrent consumption		± 10	mΑ
	verload capability (1 ms)		50 x I _{PN}	
	R.m.s. voltage for AC isolation test, 50/60Hz, 1 min		2.5	kV
	R.m.s. rated voltage,safe separation		500 ¹⁾	V
	Isolation resistance @ 500 VDC		> 1000	$M\Omega$
	Output voltage @ $\pm I_{PN}$, $R_{I} = 10 \text{ k}\Omega$, $T_{A} = 25^{\circ}\text{C}$		± 4	V
R _{OUT} O	utput internal resistance		100	Ω
R _L	oad resistance		> 1	kΩ

Accı	ıracy - Dynamic performance data			
X	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ (without offset)		< ± 1	%
$\mathbf{E}_{\scriptscriptstyle \perp}$	Linearity 2) $(0\pm \hat{l}_{PN})$		< ± 1	% of I _{DN}
V _	Electrical offset voltage, $T_{\Delta} = 25^{\circ}\text{C}$		$< \pm 40$	m̈ν
V _{OE} V _{OH}	Hysteresis offset voltage @ I _P = 0			
OH	after an excursion of 1 x I _{PN}		$< \pm 15$	m۷
V_{OT}	Thermal drift of V _{OF}	typ	± 1.5	mV/K
01	32	max	± 3	mV/K
TC E _G	Thermal drift of the gain (% of reading)		$< \pm 0.1$	%/K
t,	Response time @ 90% of Ip		< 3	μs
di/dt	di/dt accurately followed		> 50	A/µs
f	Frequency bandwidth 3) (0 3 dB)		DC 50) kHz
Gene	eral data			


	Ochoral data		
T ,	Ambient operating temperature	- 10 + 80	°C
T,	Ambient storage temperature	- 25 + 85	°C
m	n Mass	< 14	g
	Standards 4)	EN50178	

Notes: 1) Pollution class 2, overvoltage category III

²⁾ Linearity data exclude the electrical offset.

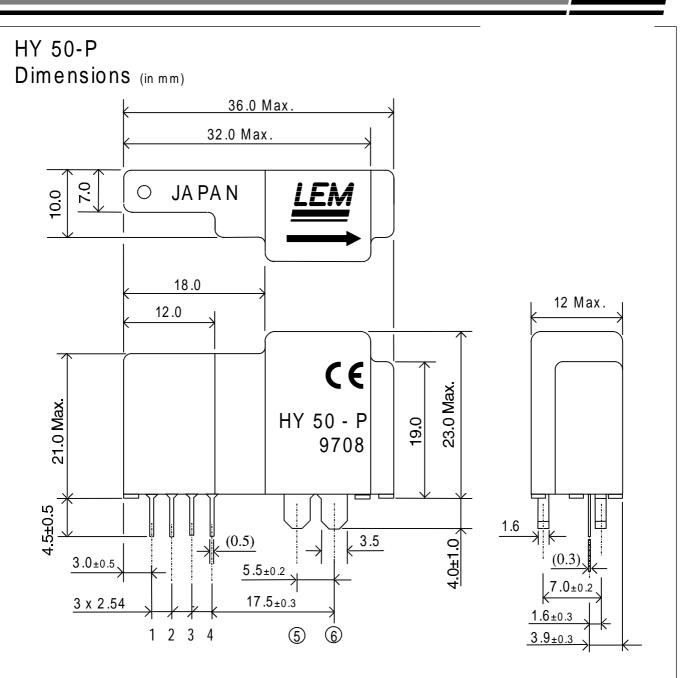
- ³⁾ Please refer to derating curves in the technical file to avoid excessive core heating at high frequency
- ⁴⁾ Please consult characterisation report for more techinical details and application advises.

 $I_{PN} = 50 A$

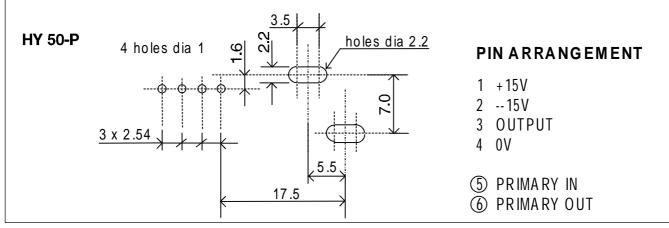
Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500 V~
- Compact design for PCB mounting
- Low power consumption
- Extended measuring range (3 x I_{PN})
- Insulated plastic case recognized according to UL 94-V0.

Advantages


- Easy mounting
- Small size and space savings
- Only one design for wide current ratings range
- High immunity against external interference

Applications


- General purpose inverters
- Switched-Mode Power Supplies (SMPS)
- AC motor speed control
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

980723/2

PCB MOUNTING DIMENSIONS (in mm ± 0.1 , hole -0, ± 0.2)

