
Data Sheet, V2.0, December 2003

Memory Products

Edition 2003-12-16

Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany
© Infineon Technologies AG 2004. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

HYE18P16161AC-70/L70 HYE18P16161AC-85/L85

16M Asynchronous/Page CellularRAM CellularRAM

Memory Products

HYE18P1	6161AC-70/L	_70, HYE18P16161AC-85/L85	
Revision	History:	2003-12-16	V2.0
Previous \	/ersion:		
Page	Subject	ts (major changes since last revision)	
all	2nd bin	of Icc2 added. Marking for low-power part puts "L" in the place of "-"	
all	tLZ, tBl	LZ, tOLZ are adjusted	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

techdoc.mp@infineon.com

1	Overview	
1.1	Features	
1.2 1.3	General Description	
1.4	HYE18P16161AC(-/L)70/85 Ball Configuration	
1.5	Functional Block Diagram	
1.6	Commands	
2	Functional Description	14
2.1	Power-Up and Initialization	14
2.2	Access To The Control Register Map	15
2.3	Refresh Control Register	
2.3.1	Partial Array Self Refresh (PASR)	
2.3.2	Deep Power Down Mode	
2.3.3	Temperature Compensated Self Refresh (TCSR)	
2.3.4	Power Saving Potential in Standby When Applying PASR, TCSR or DPD	
2.3.5	Page Mode Enable/Disable	
2.4	Asynchronous Read	
2.4.1	Page Read Mode	
2.5	Asynchronous Write	
2.6 2.7	Deep Power Down Mode Entry/ Exit	
	General AC Input/Output Reference Waveform	
3	Electrical Characteristics	
3.1	Absolute Maximum Ratings	
3.2	Recommended Power & DC Operation Ratings	
3.3	Output Test Conditions	
3.4	Pin Capacitances	28
4	Package Outlines	29
5	Appendix A: Low-Frequency Mode	30
5.1	Asynchronous Access	30
6	Appendix B: S/W Register Entry Mode ("4-cycle method")	31

Figure 1	CellularRAM - Interface Configuration Options	9
Figure 2	Standard Ballout - HYE18P16161AC(-/L)70/85	
Figure 3	Functional Block Diagram	. 12
Figure 4	Power Up Sequence	
Figure 5	Refresh Control Registers	
Figure 6	Control Register Write Access Protocol	
Figure 7	PASR Programming Scheme	
Figure 8	PASR Configuration Example	. 18
Figure 9	Asynchronous Read - Address Controlled ($\overline{CS1} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} and/or $\overline{LB} = V_{IL}$, $ZZ = \overline{CS1}$	V_{IH}
	20	
Figure 10	Asynchronous Read ($\overline{\text{WE}} = V_{\text{IH}}$, ZZ = V_{IH})	. 20
Figure 11	Asynchronous Page Read Mode (ZZ = V_{IH})	. 21
Figure 12	Asynchronous Write - $\overline{\text{WE}}$ Controlled ($\overline{\text{OE}} = V_{\text{IH}}$ or V_{IL} , $ZZ = V_{\text{IH}}$)	. 23
Figure 13	Asynchronous Write - $\overline{\text{CS1}}$ Controlled ($\overline{\text{OE}} = \overrightarrow{V}_{\text{IH}}$ or $\overrightarrow{V}_{\text{IL}}$, $ZZ = \overrightarrow{V}_{\text{IH}}$)	. 23
Figure 14	Asynchronous Write - \overline{UB} , \overline{LB} Controlled ($\overline{OE} = V_{IH}$ or V_{IL} , $ZZ = V_{IH}$)	. 24
Figure 15	Asynchronous Write to Control Register ($\overline{OE} = V_{IH}$ or V_{IL})	
Figure 16	Deep Power Down Entry/ Exit	. 26
Figure 17	Output Test Circuit	. 28
Figure 18	P-VFBGA-48 (Plastic Very Thin Fine Pitch Ball Grid Array Package)	. 29
Figure 19	Low Frequency Mode	. 30
Figure 20	S/W Register Entry timing (Address input = FFFFFh)	. 31
Figure 21	RCR Mapping in S/W Register Entry	. 32

Pata Shaat 6 V2.0.2002.42.4

Table 1	Product Selection	8
Table 2	Ball Description - HYE18P16161AC(-/L)70/85	. 11
Table 3	Asynchronous Command Table	13
Table 4	Description of Commands	13
Table 5	Standby Currents When Applying PASR, TCSR or DPD	18
Table 6	Timing Parameters - Asynchronous Read	22
Table 7	Timing Parameters - Asynchronous Write	25
Table 8	DPD/ ZZ Timing Table	26
Table 9	Absolute Maximum Ratings	27
Table 10	Recommended DC Operating Conditions	. 27
Table 11	DC Characteristics	27
Table 13	Pin Capacitances	28
Table 12	Operating Characteristics	28

Data Chast 7 1/2 0 2002 42 4

16M Asynchronous/Page CellularRAM CellularRAM

HYE18P16161AC-70/L70 HYE18P16161AC-85/L85

1 Overview

1.1 Features

- High density (1T1C-cell) Synchronous 16-Mbit Pseudo-Static RAM
- Designed for cell phone applications (CellularRAM)
- Functional-compatible to conventional low power asynchronous SRAM devices
- Organization 1M × 16
- · Refresh-free operation
- 1.8 V single power supply (V_{DD} and V_{DDQ})
- Support of 2.5V and 3.0V I/O voltage options ($V_{\rm DDO}$)
- · Low power optimized design
 - $-I_{STANDBY}$ = 70 μ A for L-part and 100 μ A for standard part (16M), data retention mode
 - $-I_{\rm DPD}$ = < 25 μ A (16M), non-data retention mode
- Low power features (partly adopted from the JEDEC standardized low power SDRAM specifications)
 - Temperature Compensated Self-Refresh (TCSR)
 - Partial Array Self-Refresh (PASR)
 - Deep Power Down Mode (DPD)
- 70 ns random access cycle time, 20 ns page mode (read only) cycle time
- Byte read/write control by UB/LB
- Wireless operating temperature range from -25 °C to +85 °C
- P-VFBGA-48 chip-scale package (8 × 6 ball grid)

Table 1 Product Selection

HYE18P16161AC	-70	-85	L70	L85
Min. Random Cycle time (tRC)	70ns	85ns	70ns	85ns
Min. Page Read Cycle time (tPC)	20ns	25ns	20ns	25ns
Operating current (lcc1)	20mA	17mA	20mA	17mA
Stand-by current (Icc2)	100)uA	70	uA
Ordering Info			(Contact	Factory)

Pata Chapt 9

Overview

1.2 General Description

The 16M Asynchronous/Page CellularRAM (CellularRAM) is is the competitive alternative to today's SRAM based solutions in wireless applications, such as cellular phones. With its high density 1T1C-cell concept and highly optimized low power design, the CellularRAM is the advanced economic solution for the growing memory demand in baseband IC designs. SRAM-pin compatibility, refresh-free operation and extreme low power design makes a drop-in replacement in legacy systems an easy procedure.

Low power feature of Partial Array Self Refresh (PASR) allows the user to dynamically scale the active (=refreshed) memory to his needs and to adapt the refresh rate to the actual system environment. That is no power penalty is paid in case only portions of the total available memory capacity is used (e.g. 8Mb out of 16Mb).

The CellularRAM is available in two package options, in the SRAM compatible FBGA 48-ball package and with an enhanced feature set in a FBGA 54-ball package. For the advanced 54-ball device please refer to the corresponding data sheet (**HYE18P16160AC**).

The CelllularRAM can be powered from a single 1.8V power supply feeding the core and the output drivers. Feeding the I/Os with a separate voltage supply the CelllularRAM can be easily adapted to systems operating in an I/O voltage range from 1.8V to 3.0V. The chip is fabricated in Infineon Technologies advanced 0.14µm low power process technology.

The configuration of interfacing CellularRAM is illustrated in Figure 1. Data byte control (UB, LB) is featured in all modes and provides dedicated lower and upper byte access.

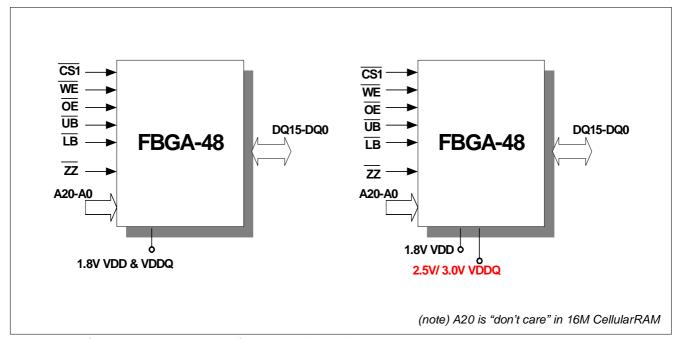


Figure 1 CellularRAM - Interface Configuration Options

The CellularRAM comes in a P-VFBGA-48 package.

Note Chart 0 1/2 0 2002 42 40

Overview

1.3 HYE18P16161AC(-/L)70/85 Ball Configuration

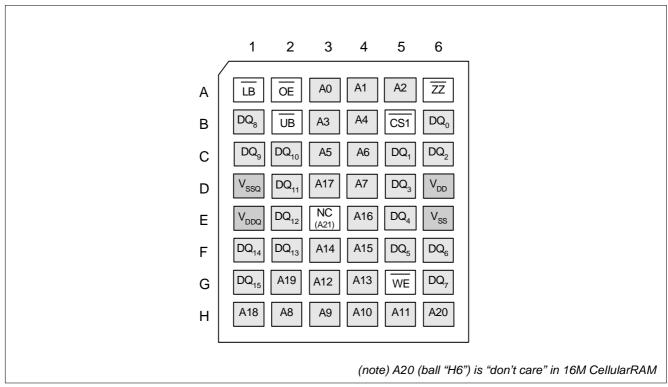


Figure 2 Standard Ballout - HYE18P16161AC(-/L)70/85

Note: Figure 2 shows top view

Opto Chapt 10 1/2 0 2002 12 1

Overview

1.4 HYE18P16161AC(-/L)70/85 Ball Definition and Description

Table 2 Ball Description - HYE18P16161AC(-/L)70/85

Table 2	_	cription - HYE18P16161AC(-/L)70/85
Ball	Type	Detailed Function
CS1	Input	Chip Select CS1 enables the command decoder when low and disables it when high. When the command decoder is disabled new commands are ignored, addresses are don't care and outputs are forced to high-Z. Internal operations, however, continue. For the details please refer to the command tables in Chapter 1.6.
ŌĒ	Input	Output Enable OE controls DQ output driver. OE low drives DQ, OE high sets DQ to high-Z.
WE	Input	Write Enable WE set to low while CS is low initiates a write command.
UB, LB	Input	Upper/Lower Byte Enable UB enables the upper byte DQ15-8 (resp. LB DQ7 0) during read/write operations. UB (LB) deassertion prevents the upper (lower) byte from being driven during read or being written.
<u>77</u>	Input	Deep Power Down Enable/ Set Control Register Strapping ZZ to low for more than 10µs the device is put to deep power down mode. If a write access is initiated instantly (<500ns) after ZZ has been asserted to low access to the refresh configuration register is given. By applying the SET CONTROL REGISTER (SCR) command (see Table 3) the address bus is then loaded into the refresh control register.
A <19:0>	Input	Address Inputs During a Control Register Set operation, the address inputs define the register settings.
DQ <15:0>	I/O	Data Input/Output The DQ signals 0 to 15 form the 16-bit data bus.
$ \begin{array}{c} 1 \times V_{\text{DD}} \\ 1 \times V_{\text{SS}} \end{array} $	Power Supply	Power Supply, Core Power and Ground for the internal logic.
$\begin{array}{c} \hline {\bf 1} \times V_{\rm DDQ} \\ {\bf 1} \times V_{\rm SSQ} \end{array}$	Power Supply	Power Supply, I/O Buffer Isolated Power and Ground for the output buffers to provide improved noise immunity.
2 × NC	_	No Connect Please do not connect. Reserved for future use, i.e. H6: A20, E3: A21, see ballout in Figure 2 on Page 10.

Note Chest 11 12 0 2002 12 16

Overview

1.5 Functional Block Diagram

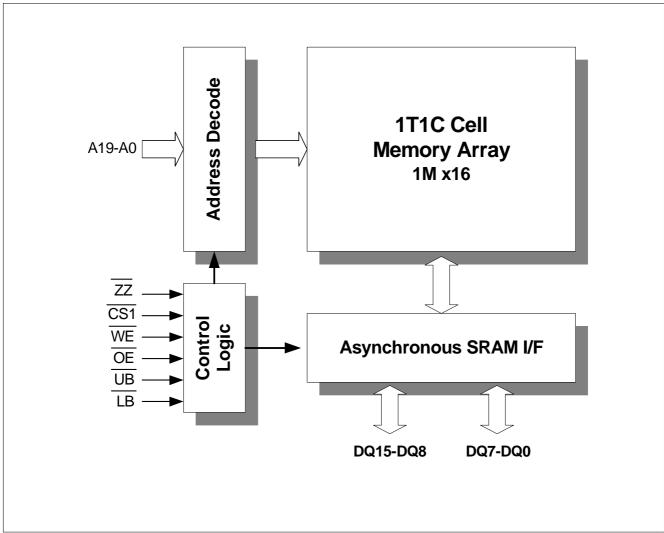


Figure 3 Functional Block Diagram

Poto Chart 12 1/2 0 2002 12 14

Overview

1.6 Commands

All commands are of asynchronous nature. The supported control signal combinations are listed in the table below.

 Table 3
 Asynchronous Command Table

Operation Mode	Power Mode	CS1	WE	ŌE	UB/LB	ZZ	A19	A18 - A0	DQ15:0
READ	Active	L	Н	L	L ¹⁾	Н	V	ADR	DOUT
WRITE	Active	L	L	X ²⁾	L ¹⁾	Н	V	ADR	DIN
SET CONTROL REGISTER	Active	L	L	X ²⁾	Х	L	L	RCR DIN	X
NO OPERATION	Standby~Active ³⁾	L	Н	Н	Х	Н	Х	Х	High-Z
DESELECT	Standby	Н	Х	Х	Х	Х	Х	Х	High-Z
DPD	Deep Power Down	Н	Х	Х	Х	L	Х	Х	High-Z

- 1) Table 3 reflects the behaviour if $\overline{\sf UB}$ and $\overline{\sf LB}$ are asserted to low. If only either of the signals, $\overline{\sf UB}$ or $\overline{\sf LB}$, is asserted to low only the corresponding data byte will be output or written ($\overline{\sf UB}$ enables DQ15 DQ8, $\overline{\sf LB}$ enables DQ7 DQ0).
- 2) During a write access invoked by WE set to low the OE signal is ignored.
- 3) Stand-by power mode applies only to the case when $\overline{\text{CS}}$ goes low from DESELECT while no address change occurs. Toggling address results in active power mode. Also, NO OPERATION from any active power mode by keeping $\overline{\text{CS}}$ low consumes the power higher than stand-by mode.

Note: 'L' represents a low voltage level, 'H' a high voltage level, 'X' represents "Don't Care", 'V' represents "Valid".

Table 4 Description of Commands

Mode	Description
READ	The READ command is used to perform an asynchronous read cycle. The signals, $\overline{\sf UB}$ and $\overline{\sf LB}$, define whether only the lower, the upper or the whole 16-bit word is output.
WRITE	The WRITE command is used to perform an asynchronous write cycle. The data is latched on the rising edge of either \overline{CS} , \overline{WE} , \overline{UB} , \overline{LB} , whichever comes first. The signals, \overline{UB} and \overline{LB} , define whether only the lower, the upper or the whole 16-bit word is latched into the CellularRAM.
SET CONTROL REGISTER	The control registers are loaded via the address inputs A15 - A0 performing an asynchronous write access. Please refer to the control register description for details. The SCR command can only be issued when the CellularRAM is in idle state.
NO OPERATION	The NOP command is used to perform a no operation to the CellularRAM, which is selected (CS1 = 0). Operations already in progress are not affected. Power consumption of this command mode varies by address change and initiating condition.
DESELECT	The DESELECT function prevents new commands from being executed by the CellularRAM. The CellularRAM is effectively deselected. I/O signals are put to high impedance state.
DPD	DPD stops all refresh-related activities and entire on-chip circuit operation. Current consumption drops below 25 μA. Wake-up from DPD also requires 150 μs to get ready for normal operation.

Note: 'L' represents a low voltage level, 'H' a high voltage level, 'X' represents "Don't Care", 'V' represents "Valid".

Note Chast 12 1/2 0 2002 42 42

Functional Description

2 Functional Description

2.1 Power-Up and Initialization

The power-up and initialization sequence guarantees that the device is preconditioned to the user's specific needs. Like conventional DRAMs, the CellularRAM must be powered up and initialized in a predefined manner. $V_{\rm DD}$ and $V_{\rm DDQ}$ must be applied at the same time to the specified voltage while the input signals are held in "DESELECT" state ($\overline{\rm CS1}$ = High).

After power on, an initial pause of $150 \,\mu s$ is required prior to the control register access or normal operation. Failure to follow these steps may lead to unpredictable start-up modes.

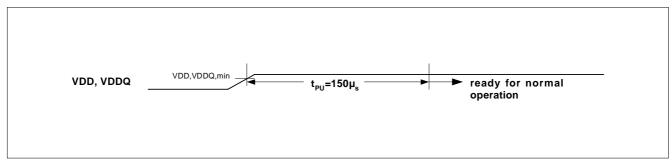


Figure 4 Power Up Sequence

Note Cheet 14 V2.0.2002.12.16

Functional Description

2.2 Access To The Control Register Map

[Disclaimer]

A20 input shown in timing diagrams is not used in 16Mbit CellularRAM. Should be "don't care".

Write-only access to the refresh control register is enabled by applying the SCR command and asserting the \overline{ZZ} -pin to low. Figure 5 shows the mapping of the address bus lines to the the refresh control register bits, whereas in Figure 6 the access timing is illustrated.

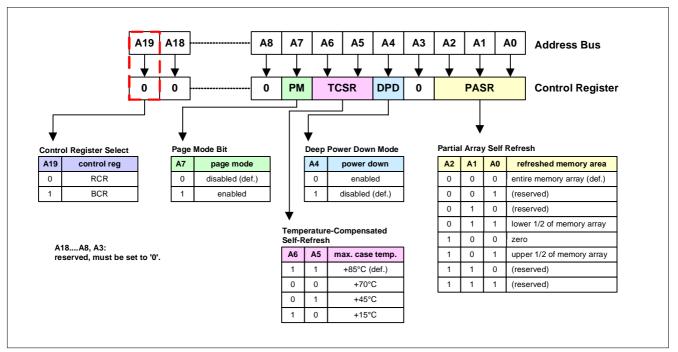


Figure 5 Refresh Control Registers

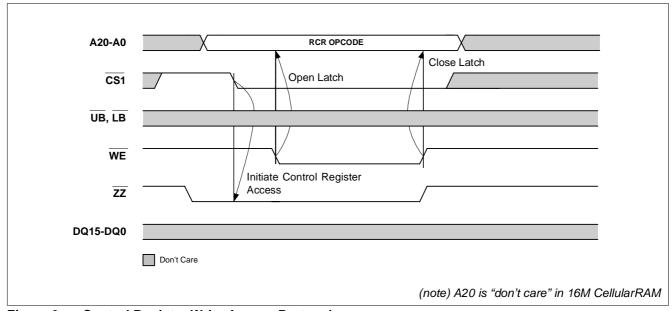


Figure 6 Control Register Write Access Protocol

Data Chast 15 No. 2002 12 16

Functional Description

2.3 Refresh Control Register

The Refresh Control Register (RCR) allows to save stand-by power additionally by making use of the Temperature-Compensated Self Refresh (TCSR), Partial-Array Self Refresh (PASR) and Deep Power Down (DPD) features. The Refresh Control Register is programmed via the Control Register Set command and retains the stored information until it is reprogrammed or the device loses power.

Please note that the RCR contents can only be set or changed when the CellularRAM is in idle state.

RCR Refresh Control Register

 $(\overline{ZZ}, A19 = 00_{R})$

 A19	A18	A17	A16	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	A0
RS			ı	ı		0	ı	ı			ı	PM	тс	SR	DPD	0		PASR	

Field	Bits	Type ¹⁾	Description
RS	19	w	Register Select 0 set to 0 to select this RCR.
PM	7	W	Page Mode Enable/Disable In asynchronous operation mode the user has the option to toggle A0 - A3 in a random way at higher rate (20 ns vs. 70 ns) to lower access times of subsequent reads with 16-word boundary. In synchronous mode this option has no effect. The max. page length is 16 words. Please note that as soon as page mode is enabled the $\overline{\text{CS1}}$ low time restriction applies. This means that the $\overline{\text{CS1}}$ signal must not be kept low longer than t_{CSL} = 10 μs. Please refer to Figure 11. 0 page mode disabled (default) 1 page mode enabled
TCSR	[6:5]	W	Temperature Compensated Self Refresh The 2-bit wide TCSR field features four different temperature ranges to adjust the refresh period to the actual case temperature. Since DRAM technology requires higher refresh rates at higher temperature this is a second method to lower power consumption in case of low or medium temperatures. 11 +85 °C (default) 00 +70 °C 01 +45 °C 10 +15 °C
DPD	4	w	Deep Power Down Enable/Disable The DPD control bit puts the CellularRAM device in an extreme low power mode cutting current consumption to less than 25 μA. Stored memory data is not retained in this mode, while the settings of control register, RCR is stored during DPD. 0 DPD enabled 1 DPD disabled (default)

Opto Chapt 16 V2.0. 2002 12.16

Functional Description

Field	Bits	Type ¹⁾	Description
PASR	[2:0]	W	Partial Array Self Refresh The 3-bit PASR field is used to specify the active memory array. The active memory array will be kept periodically refreshed whereas the disabled parts will be excluded from refresh and previously stored data will get lost. The normal operation still can be executed in disabled array, but stored data is not guaranteed. This way the customer can dynamically adapt the memory capacity in steps of 8 Mbit to one's need without paying a power penalty. Please refer to Figure 7. 000 entire memory array (default) 011 lower 1/2 of the memory array (8 Mb) 100 zero 101 upper 1/2 of the memory array (8 Mb) All others; reserved (16Mb)
Res	[18:8], 3	W	Reserved must be set to '0'

¹⁾ w: write-only access

2.3.1 Partial Array Self Refresh (PASR)

By applying PASR the user can dynamically customize the memory capacity to one's actual needs in normal operation mode and standby mode. With the activation of PASR there is no longer a power penalty paid for the larger CellularRAM memory capacity in case only e.g. 8 Mbits are used by the host system.

Bit2 down to bit0 specify the active memory array and its location (starting from bottom or top). The memory parts not used are powered down immediately after the mode register has been programmed. Advice for the proper register setting including the address ranges is given in **Figure 7**.

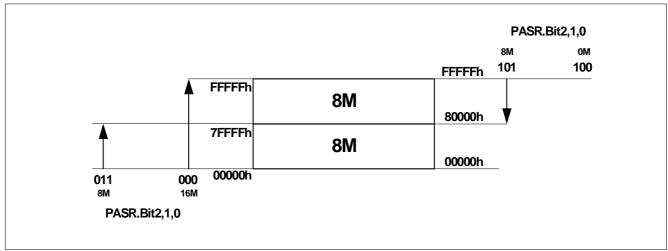


Figure 7 PASR Programming Scheme

PASR is activated, i.e. the memory parts not used are powered down, after \overline{ZZ} has been held low for more than 10 μ s. In PASR state no READ or WRITE commands are recognized. To resume WRITE or READ operations, the device must exit PASR by taking \overline{ZZ} to high level voltage again.

Pre-condition to enter PASR on \overline{ZZ} low is that the Deep Power Down mode has been disabled before via RCR.Bit4= 1.

Figure 8 shows an exemplary PASR configuration where it is assumed that the application uses max. 8 Mbit out of 16 Mbit.

Oato Choot 17 1/2 0 2002 12 16

Functional Description

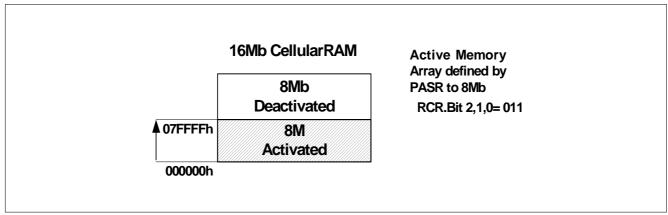


Figure 8 PASR Configuration Example

2.3.2 Deep Power Down Mode

To put the device in deep power down mode, it is required to comply with 2-steps. At first, the DPD mode bit must be set to be enabled in the Refresh Configuration Register. When DPD entry is really required, \overline{ZZ} pin must be asserted to low for longer than 10 μ s. Between these 2 steps, any normal operations are permitted. Once the device enters into this extreme low power mode, current consumption is cut down to less than 25 μ A.

All internal voltage generators inside the CelllularRAM are switched off and the internal self-refresh is stopped. This means that all stored information will be lost in any time. The device will remain in DPD mode as long as \overline{ZZ} is held low. To exit the Deep Power Down mode, it is needed to simply bring \overline{ZZ} to high voltage level. A guard time of at least 150µs has to be met where no commands beside DESELECT must be applied to re-enter standby or idle mode. (see Figure 16).

2.3.3 Temperature Compensated Self Refresh (TCSR)

The 2-bit wide TCSR field features four different temperature ranges to adjust the refresh period to the actual case temperature. DRAM technology requires higher refresh rates at higher temperature. At low temperature the refresh rate can be reduced, which reduces as well the standby current of the chip. This feature can be used in addition to PAR to lower power consumption in case of low or medium temperatures. Please refer to **Table 5**.

2.3.4 Power Saving Potential in Standby When Applying PASR, TCSR or DPD

Table 5 demonstrates the currents in standby mode when PASR, TCSR or DPD is applied.

Table 5 Standby Currents When Applying PASR, TCSR or DPD

Operation Mode	Power Mode	PASR	Bit Controlled	Wake-Up Phase	Active Array	Standby [μA]				
NO	STANDBY	TCSR	RCR.Bit6-5	_	_	85°	70°	45°	15°	
OPERATION/ DESELECT		PASR	RCR.Bit2-0	_	Full 1/2 0	70(100) 60(80) 50(60)	65(90) 60(75) 50(60)	55(70) 53(65) 50(60)	50(60) 50(60) 50(60)	
DPD	DEEP POWER DOWN	DPD	RCR.Bit4	~150 µs	0	25.0				

10 V2.0.2002.12.16

Functional Description

2.3.5 Page Mode Enable/Disable

In asynchronous operation mode, the user has the option to enable page mode to toggle A0 - A3 in random way at higher cycle rate (20 ns vs. 70 ns) to lower access times of subsequent reads within 16-word boundary. Write operation is not supported in the manner of page mode access. In synchronous mode, this option has no effect. The max. page length is 16 words, so which A0 - A3 is regarded as page-mode address. If the access needs to cross the boundary of 16-word (any difference in A18 - A4), then it should start over new random access cycle, which is the same as asynchronous read operation.

Please note that as soon as page mode is enabled the $\overline{CS1}$ low time restriction applies. This means that the $\overline{CS1}$ signal must not kept low longer than $t_{CSL} = 10 \,\mu s$. Please refer to **Figure 11**.

Oato Choot 10 1/2 0 2002 12 16

Functional Description

2.4 Asynchronous Read

[Disclaimer]

A20 input shown in timing diagrams is not used in 16Mbit CellularRAM. Should be "don't care".

The CellularRAM applies the standard asynchronous SRAM protocol to perform read and write accesses.

Reading from the device in asynchronous mode is accomplished by asserting the Chip Select (CS1) and Output Enable (OE) signals to low while forcing Write Enable (WE) to high. If the Upper Byte (UB) control line is set active low then the upper word of the addressed data is driven on the output lines, DQ15 to DQ8. If the Lower Byte (LB) control line is set active low then the lower word of the addressed data is driven on the output lines, DQ7 to DQ0.

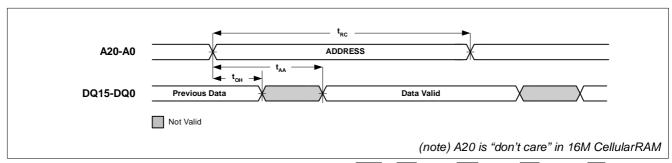


Figure 9 Asynchronous Read - Address Controlled ($\overline{CS1} = \overline{OE} = V_{IL}$, $\overline{WE} = V_{IH}$, \overline{UB} and/or $\overline{LB} = V_{IL}$, $\overline{ZZ} = V_{IH}$)

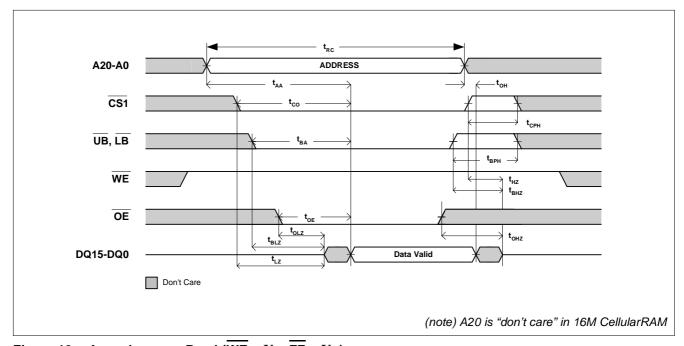


Figure 10 Asynchronous Read ($\overline{WE} = V_{IH}$, $\overline{ZZ} = V_{IH}$)

Opto Chapt 20 V2.0.2002.42.46

Functional Description

2.4.1 Page Read Mode

If activated by RCR.Bit7 page mode allows to toggle the four lower address bits (A3 to A0) to perform subsequent random read accesses (max. 16-words by A3 - A0) at much faster speed than 1st read access. Page mode operation supports only read access in CellularRAM. As soon as page mode is activated, $\overline{\text{CS1}}$ low time restriction (t_{CSL}) applies. In case of $\overline{\text{CS1}}$ staying low longer than t_{CSL} limit, then it is alternative way to toggle non-page address (A18 - A4) no later than $t_{\text{CSL},\text{max}}$. Therefore the usage of page mode is only recommended in systems which can respect this limitation.

Please see also application note on Page 30.

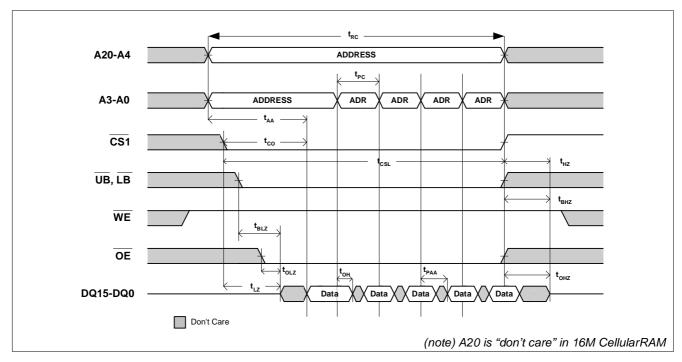


Figure 11 Asynchronous Page Read Mode ($\overline{ZZ} = V_{IH}$)

Opto Chapt 24 V2 0 2002 42 46

Functional Description

Table 6 Timing Parameters - Asynchronous Read

Parameter	Symbol	7	70	8	5	Unit	Notes	
		Min.	Max.	Min.	Max.			
Read cycle time	t_{RC}	70	_	85	_	ns	_	
Address access time	t_{AA}	-	70	_	85	ns	_	
Page address cycle time	t_{PC}	20	_	25	_	ns	-	
Page address access time	t_{PAA}	_	20	_	25	ns	_	
Output hold from address change	t _{OH}	5	_	6	_	ns	_	
Chip select access time	$t_{\rm CO}$	_	70	_	85	ns	_	
UB, LB access time	t_{BA}	_	70	_	85	ns	_	
OE to valid output data	$t_{\sf OE}$	_	20	_	25	ns	_	
Chip select pulse width low time	t_{CSL}	_	10	_	10	μs	_	
Chip select to output active	t_{LZ}	6	_	6	_	ns	_	
Chip select disable to high-Z output	t_{HZ}	_	8	_	8	ns	_	
UB, LB enable to output active	t_{BLZ}	6	_	6	_	ns	_	
UB, LB disable to high-Z output	t_{BHZ}	_	8	_	8	ns	_	
Output enable to output active	t_{OLZ}	3	_	3	_	ns	_	
Output disable to high-Z output	t_{OHZ}	-	6	_	8	ns	_	
CS1 high time when toggling	t_{CPH}	10	_	15	_	ns	_	
UB, LB high time when toggling	t_{BPH}	10	_	15	_	ns	_	

Oato Chapt 22 V2.0. 2002 42.1

Functional Description

2.5 Asynchronous Write

Writing to the device in asynchronous \underline{mode} is accomplished by asserting the Chip Select $(\overline{CS1})$ and Write Enable (\overline{WE}) signals to low. If the Upper Byte (\overline{UB}) control line is set active low then the upper word (DQ15 to DQ8) of the data bus is written to the specified memory location. If the Lower Byte (\overline{LB}) control line is set active low then the lower word (DQ7 to DQ0) of the data bus is written to the specified memory location. Write operation takes place when either one or both \overline{UB} and \overline{LB} is asserted low. The data is latched by the rising edge of either $\overline{CS1}$, \overline{WE} , or $\overline{UB/LB}$ whichever signal comes first.

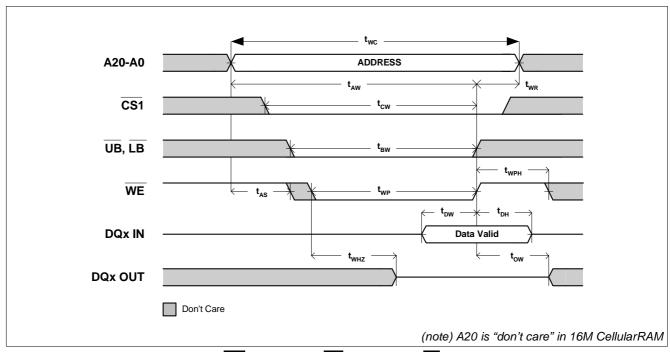


Figure 12 Asynchronous Write - $\overline{\text{WE}}$ Controlled ($\overline{\text{OE}} = V_{\text{IH}}$ or V_{IL} , $\overline{\text{ZZ}} = V_{\text{IH}}$)

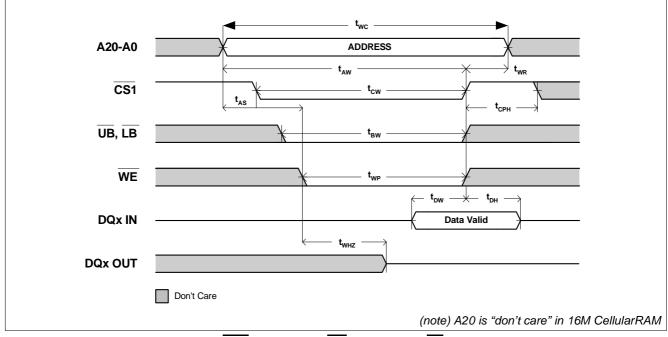


Figure 13 Asynchronous Write - $\overline{CS1}$ Controlled ($\overline{OE} = V_{IH}$ or V_{IL} , $\overline{ZZ} = V_{IH}$)

Functional Description

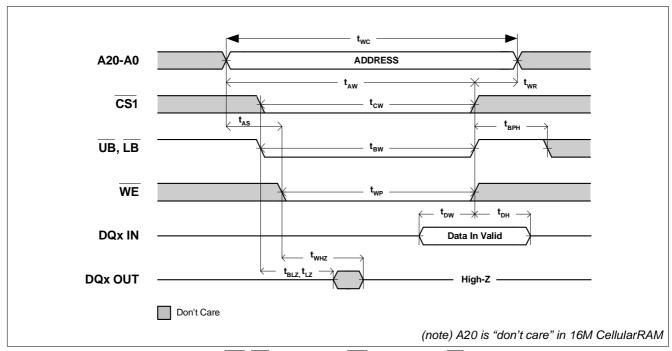


Figure 14 Asynchronous Write - $\overline{\text{UB}}$, $\overline{\text{LB}}$ Controlled ($\overline{\text{OE}} = V_{\text{IH}}$ or V_{IL} , $\overline{\text{ZZ}} = V_{\text{IH}}$)

The programming of control register in asynchronous mode is <u>performed</u> in the similar manner as asynchronous write except \overline{ZZ} being held low during the <u>operation</u>. Note that \overline{ZZ} has to meet set-<u>up time</u> (t_{ZZWE}) and hold time (t_{WEZZ})of valid state (= Low) in reference to WE falling and rising edge, respectively. CS1 should toggle at the end of the operation to get ready for following access.

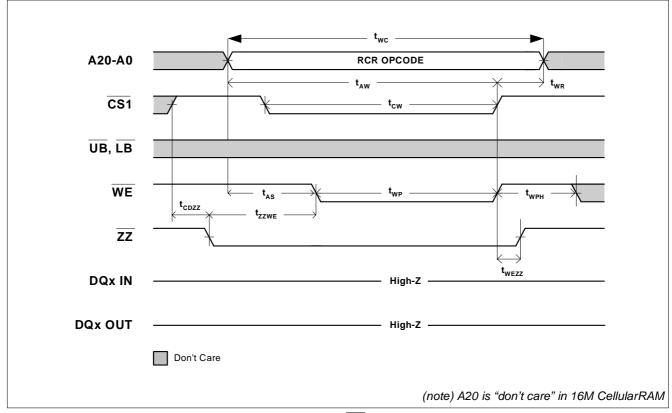


Figure 15 Asynchronous Write to Control Register ($\overline{OE} = V_{IH}$ or V_{IL})

Functional Description

Table 7 Timing Parameters - Asynchronous Write

Parameter	Symbol	7	' 0	8	5	Unit	Notes
		Min.	Max.	Min.	Max.	ns n	
Write cycle time	t_{WC}	70	_	85	_	ns	_
Address set-up time to start of write	t _{AS}	0	_	0	_	ns	_
Address valid to end of write	t_{AW}	70	_	85	_	ns	_
Write recovery time	t_{WR}	0	_	0	_	ns	_
Chip select pulse width low time	$t_{\rm CSL}$	_	10	_	10	μs	_
Chip select to end of write	t_{CW}	70	_	85	_	ns	_
Byte control valid to end of write	t _{BW}	70	_	85	_	ns	_
Write pulse width	t_{WP}	40	_	45	_	ns	_
Write pulse pause	t_{WPH}	10	_	15	_	ns	_
CS high time when toggling	t_{CPH}	10	_	15	_	ns	_
UB, LB high time when toggling	t_{BPH}	10	_	15	_	ns	_
Write to output disable	t_{WHZ}	_	8	_	10	ns	_
End of write to output enable	$t_{\sf OW}$	3	_	3	_	ns	_
Write data setup time	t_{DW}	20	_	20	_	ns	_
Write data hold time	t_{DH}	0	_	0	_	ns	_
CS1 high setup time to ZZ low	t_{CDZZ}	5	_	5	_	ns	_
ZZ active setup time to start of write	$t_{\sf ZZWE}$	10	500	10	500	ns	_
ZZ active hold time from end of write	t_{WEZZ}	0	_	0	_	ns	_

Note Chart 25

Functional Description

2.6 Deep Power Down Mode Entry/ Exit

To put the device in deep power down mode, it is required to comply with 2-step operation. At first, the DPD mode bit (RCR.bit4) has be programmed to be enabled in the Refresh Configuration Register through SCR command. When DPD entry is really required, \overline{ZZ} pin must be asserted to low for longer than 10µs while $\overline{CS1}$ sets to high as shown in Figure 15. Between these 2 steps, any normal operations are permitted. Once the device enters into this extreme low power mode, current consumption is cut down to less than 25µA.

Please note that 2 step operation for DPD entry is not designed to take place at a time when \overline{ZZ} is held low. In case of back-to-back operation to perform 2 steps, it is required to meet \overline{ZZ} precharge time (t_{ZPH}).

All internal voltage generators inside the CelllularRAM are switched off and the internal self-refresh is stopped. This means that all stored information will be lost in any time. The device will remain in DPD mode as long as \overline{ZZ} is held low. To exit the Deep Power Down mode, it is needed to simply bring \overline{ZZ} to high voltage level. A guard time of at least 150µs (t_R) has to be met where no commands beside DESELECT must be applied to re-enter standby or idle mode.

Figure 16 Deep Power Down Entry/ Exit

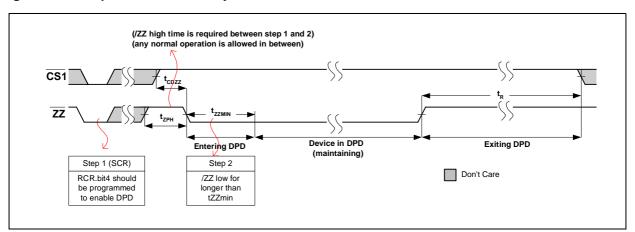


Table 8 DPD/ ZZ Timing Table

Parameter	Symbol	70 8	k 85	Unit	Notes
		Min.	Max.		
CS1 high setup time to ZZ low	t_{CDZZ}	5	_	ns	-
ZZ precharge time	t_{ZPH}	5	_	ns	_
ZZ active for DPD entry	t _{ZZMIN}	10	_	μs	_
Recovery time from DPD exit	t_{R}	150	_	μs	_

2.7 General AC Input/Output Reference Waveform

The input timings refer to a midlevel of $V_{\rm DDQ}/2$ while as output timings refer to midlevel $V_{\rm DDQ}/2$. The rising and falling edges are 10 - 90% and < 2 ns.

Oato Choot 26 V/2 0 2002 42 46

Electrical Characteristics

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Table 9 Absolute Maximum Ratings

Parameter	Symbol	Symbol Limit		Unit	Notes
		Min.	Max.		
Operating temperature range	T_{C}	-25	+85	°C	-
Storage temperature range	T_{STG}	-55	+150	°C	_
Soldering peak temperature (10 s)	T_{Sold}	_	260	°C	_
Voltage of $V_{\rm DD}$ supply relative to $V_{\rm SS}$	V_{DD}	-0.3	+2.45	V	_
Voltage of $V_{\rm DDQ}$ supply relative to $V_{\rm SS}$	V_{DDQ}	-0.3	+3.6	V	_
Voltage of any input relative to $V_{\rm SS}$	V_{IN}	-0.3	+3.6	V	-
Power dissipation	P_{D}	_	180	mW	_
Short circuit output current	I_{OUT}	-50	+50	mA	-
			-		

Attention: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

3.2 Recommended Power & DC Operation Ratings

All values are recommended operating conditions unless otherwise noted.

Table 10 Recommended DC Operating Conditions

Symbol	L	imit Value	Unit	Notes	
	Min.	Тур.	Max.		
V_{DD}	1.7	1.8	1.95	V	_
V_{DDQ}	1.7	1.8	2.25	V	_
V_{DDQ}	2.3	2.5	2.7	V	_
V_{DDQ}	2.7	3.0	3.3	V	_
V_{IH}	$V_{\rm DDQ} - 0.4$	_	$V_{\rm DDQ} + 0.2$	V	_
V_{IL}	-0.2	_	0.4	V	_
	$egin{array}{c} V_{ m DD} \ V_{ m DDQ} \ V_{ m DDQ} \ V_{ m DDQ} \ V_{ m IH} \ \end{array}$	$\begin{array}{c c} & & & & \\ \hline & V_{\rm DD} & & 1.7 \\ \hline & V_{\rm DDQ} & & 1.7 \\ \hline & V_{\rm DDQ} & & 2.3 \\ \hline & V_{\rm DDQ} & & 2.7 \\ \hline & V_{\rm IH} & & V_{\rm DDQ} - 0.4 \\ \hline \end{array}$	$\begin{array}{c ccccc} & \textbf{Min.} & \textbf{Typ.} \\ \hline V_{\text{DD}} & 1.7 & 1.8 \\ \hline V_{\text{DDQ}} & 1.7 & 1.8 \\ \hline V_{\text{DDQ}} & 2.3 & 2.5 \\ \hline V_{\text{DDQ}} & 2.7 & 3.0 \\ \hline V_{\text{IH}} & V_{\text{DDQ}} - 0.4 & - \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 11 DC Characteristics

Parameter	Symbol	L	Unit	Notes		
		Min.	Тур.	Max.		
Output high voltage ($I_{OH} = -0.2 \text{ mA}$)	V_{OH}	$V_{DDQ}\! imes\!0.8$	_	_	V	_
Output low voltage (I _{OL} = 0.2 mA)	V_{OL}	_	_	$V_{\rm DDQ} \times 0.2$	V	_
Input leakage current	I_{LI}	_	_	1	μΑ	_
Output leakage current	I_{LO}	_	_	1	μΑ	_

Oato Choot 27 V2.0.2002.42.46

Electrical Characteristics

Table 12 Operating Characteristics

Parameter	Symbol	70		85		Unit	Test	Notes
		Min.	Max.	Min.	Max.		Condition	
Operating Current						mA	$V_{\rm in} = V_{\rm DD}$ or	1)
 Async read/write random @t_{RCmin} 	I_{DD1}	_	20	-	17		$V_{\rm SS}$, Chip	
• Async read/write random $@t_{RC} = 1 \mu s$	I_{DD1L}	_	5	-	5		enabled,	
Async Page read	I_{DD1P}	_	15	-	12		$I_{\text{out}} = 0$	
Stand-By Current : L-part (16M)	I_{DD2}	_	70	_	70	μΑ	$V_{\rm in} = V_{\rm DD}$ or	_
Stand-By Current : Std. part (16M)		_	100	_	100	μΑ	$V_{ m SS}$, Chip deselected, (Full array)	
Deep Power Down Current (16M)	I_{DD3}	_	25	-	25	μΑ	V_{in} = V_{DD} or V_{SS}	-

¹⁾ The specification assumes the output disabled.

3.3 Output Test Conditions

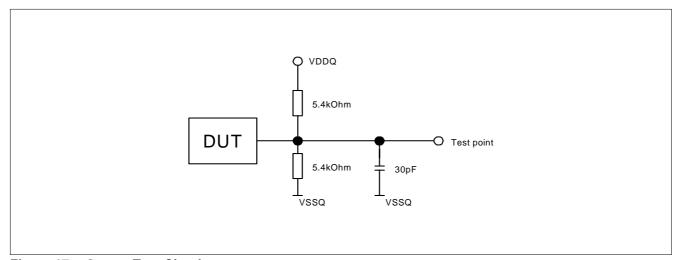


Figure 17 Output Test Circuit

Please refer to section Section 2.7.

3.4 Pin Capacitances

Table 13 Pin Capacitances

Pin	Lin	nit Values	Unit	Condition
	Min.	Max.		
A19 - A0, CS1, OE, WE, UB, LB, ZZ	_	5.0	pF	T_A = +25 °C freq. = 1 MHz
DQ15 - DQ0	_	6.0	pF	$V_{\text{pin}} = 0 \text{ V}$ (sampled, not 100%
				tested)

Package Outlines

4 Package Outlines

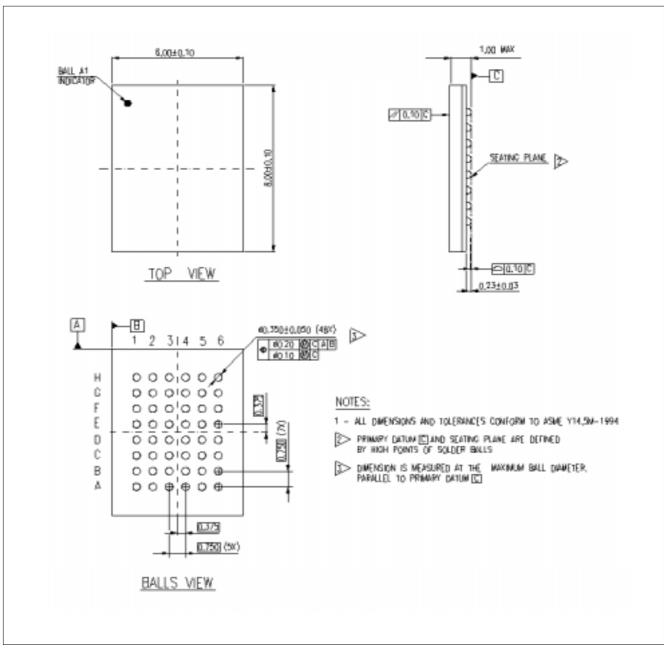


Figure 18 P-VFBGA-48 (Plastic Very Thin Fine Pitch Ball Grid Array Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products.

Appendix A: Low-Frequency Mode

5 Appendix A: Low-Frequency Mode

5.1 Asynchronous Access

Depending on the random access frequency two cases are distinguished:

High Frequency Mode (≥ 100 kHz):

There are no $t_{\rm RC}$ max. time nor $\overline{\rm CS1}/\overline{\rm OE}$ max. low time restrictions during subsequent random read or write accesses.

Low Frequency Mode (< 100 kHz):

There are no t_{RC} max. time nor $\overline{CS1}/\overline{OE}$ max. low time restrictions if all control signals ($\overline{CS1}$, \overline{OE} , \overline{WE} , $\overline{UB}/\overline{LB}$) follow the modified timing as shown below, see attached timing diagram and timing table. There is no extra mode register setting necessary.

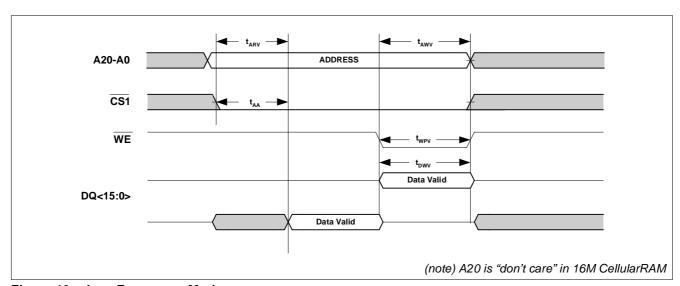


Figure 19 Low Frequency Mode

Parameter	Symbol 70			85		Notes	
		Min.	Max.	Min.	Max.		
Address stable time for read access	t_{ARV}	70	_	85	_	ns	_
Address stable overlap with write pulse	t_{AWV}	70	_	85	_	ns	_
Write pulse width	t_{WPV}	70	_	85	_	ns	_
Data to write time overlap	t_{DWV}	70	_	85	_	ns	_

Opto Chapt 20 V2.0.2002.42.46

Appendix B: S/W Register Entry Mode ("4-cycle method")

6 Appendix B: S/W Register Entry Mode ("4-cycle method")

Other than \overline{ZZ} -controlled SCR operation, CellularRAM supports software (S/W) method as an alternative to access the control registers. Since S/W register entry mode consists of 4 consecutive access cycles to top memory location (all addresses are "1"), it is often referred as "4-cycle method". 4-cycles starts from 2 back-to-back read cycles (initializing command identification) followed by one write cycle (command identification completed and refresh control register is accessed), then final write cycle for configuring the RCR by the given input or read cycle to check the content of the register through DQ pins. It does function the configuration of control register bits like the way with dedicated pin, \overline{ZZ} method, but there are a few differences from \overline{ZZ} -controlled method as follow;

- Register read mode (checking content) is supported with S/W register entry as well as register write (program).
- The mode bits for control register are supplied through DQ <15:0> instead of address pins in ZZ-controlled.
 Though each register has 20-bits (A<19:0>) for 16M CellularRAM, only low 16-bit registers becomes valid during S/W method.
- The valid selection of refresh control register, RCR, is done with the state of DQ<15:0> given at 3rd cycle. ("00h")
- Since S/W register entry asks for 4 complete access cycles in a row and the device is designed operating with
 internally regulated supply which is going to be discharged in deep power-down (DPD) mode, DPD function
 is not supported with this programming method.
- The method is realized by the device exactly when 2 consecutive read cycles to top memory location is followed by write cycle to the same location, so that any exceptional cycle combination not only access mode, but also the number of cycles will fail in invoking the register entry mode properly.

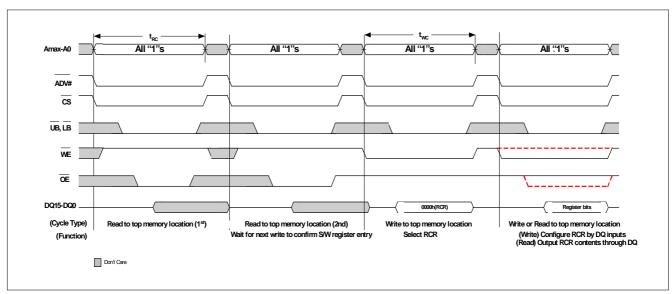


Figure 20 S/W Register Entry timing (Address input = FFFFFh)

oto Choot

Appendix B: S/W Register Entry Mode ("4-cycle method")

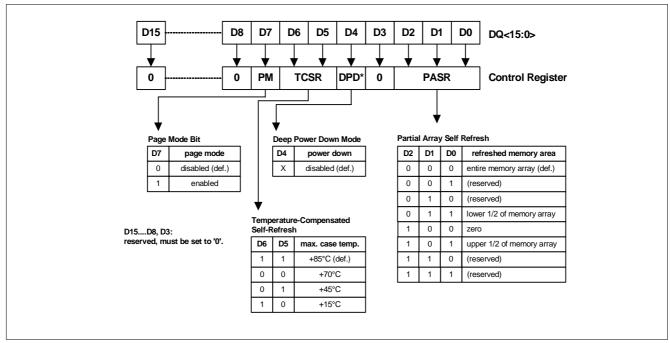


Figure 21 RCR Mapping in S/W Register Entry

Opto Chapt 22 V2.0.2002.42.46

