查询SI4900DY供应商

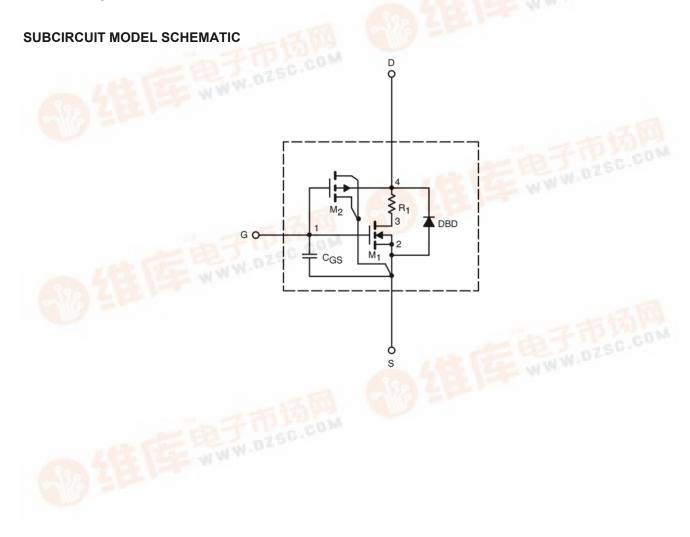
VISHAY.

SPICE Device Model Si4900DY Vishay Siliconix

N-Channel 60-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


Apply for both Linear and Switching Application

- Accurate over the –55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

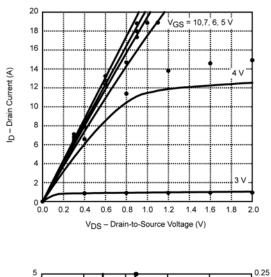
A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

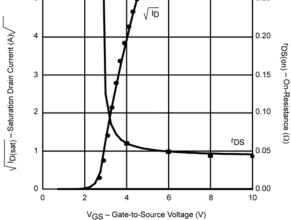
This occument is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

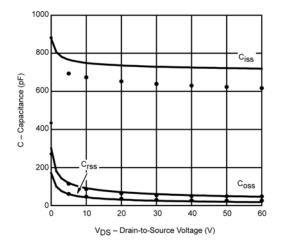
Document Number: 73237

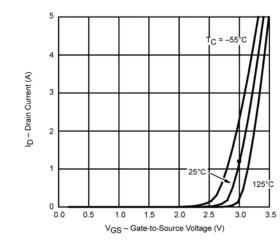
SPICE Device Model Si4900DY Vishay Siliconix

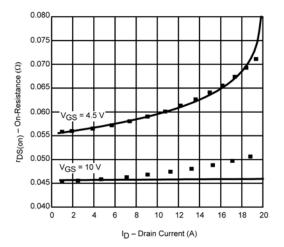
SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED)					
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	2		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5 \text{ V}, V_{\text{GS}} \text{ = } 10 \text{ V}$	105		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 4.3 A	0.046	0.046	Ω
		V_{GS} = 4.5 V, I _D = 3.9 A	0.057	0.059	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 4.3 A	16	15	S
Diode Forward Voltage ^a	V _{SD}	$I_{\rm S}$ = 1.7 A, $V_{\rm GS}$ = 0 V	0.80	0.80	V
Dynamic ^b					
Input Capacitance	C _{iss}	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHz	732	665	pF
Output Capacitance	C _{oss}		65	75	
Reverse Transfer Capacitance	C _{rss}		28	40	
Total Gate Charge	Qg	$V_{\rm DS}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 4.3 A	11	13	nC
		V_{DS} = 30 V, V_{GS} = 4.5 V, I_{D} = 4.3 A	5.6	6	
Gate-Source Charge	Q _{gs}		2.3	2.3	
Gate-Drain Charge	Q _{gd}		2.6	2.6	

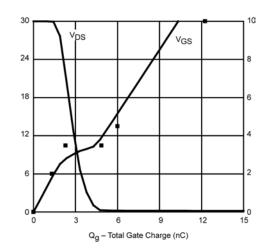

Notes


a. Pulse test; pulse width \leq 300 μs , duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.




SPICE Device Model Si4900DY Vishay Siliconix


COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED)



Note: Dots and squares represent measured data.