

74F651A/74F652A Transceivers/registers

Product specification
1999 Jun 23
Replaces datasheet 74F651/74F652/74F651A/74F652A of 1990 Oct 23
IC15 Data Handbook

Transceivers/registers

74F651A Octal transceiver/register, inverting (3-State)
74F652A Octal transceiver/register, non-inverting (3-State)

FEATURES

- Combines 74F245 and two 74F374 type functions in one chip
- High impedance base inputs for reduced loading ($70 \mu \mathrm{~A}$ in high and low states)
- Independent registers for A and B buses
- Multiplexed real-time and stored data
- Choice of non-inverting and inverting data paths
- 3-State outputs
- Industrial temperature range available $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ for 74F652A

DESCRIPTION

The 74F651A and 74F652A transceivers/registers consist of bus transceiver circuits with 3-State outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes high. Output enable (OEAB, OEBA) and select (SAB, SBA) pins are provided for bus management.

TYPE	TYPICAL $\mathrm{f}_{\max }$	TYPICAL SUPPLY CURRENT(TOTAL)
$74 \mathrm{~F} 651 / 74 \mathrm{~F} 652$	110 MHz	140 mA
$74 \mathrm{~F} 651 \mathrm{~A} / 74 \mathrm{~F} 652 \mathrm{~A}$	175 MHz	110 mA

ORDERING INFORMATION

DESCRIPTION	ORDER CODE		PKG DWG \#
	COMMERCIAL RANGE $\begin{gathered} \mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	INDUSTRIAL RANGE $\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	
24-pin plastic slim DIP (300mil)	N74F651AN, N74F652AN	I74F652AN	SOT222-1
$24-$ pin plastic SOL	N74F651AD, N74F652AD	I74F652AD	SOT137-1

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
A0 - A7, B0 - B7	A, B inputs	$3.5 / 0.116$	$70 \mu \mathrm{~A} / 70 \mu \mathrm{~A}$
CPAB, CPBA	A-to-B, B-to-A clock inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
SAB, SBA	A-to-B, B-to-A select inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
OEAB, OEBA	A-to-B, B-to-A output enable inputs	$1.0 / 0.033$	$20 \mu \mathrm{~A} / 20 \mu \mathrm{~A}$
A0 - A7, B0 - B7	A, B outputs for N74F651, N74F652	$750 / 106.7$	$15 \mathrm{~mA} / 64 \mathrm{~mA}$
A0 - A7, B0 - B7	A, B outputs for N74F651A, N74F652A	$750 / 80$	$15 \mathrm{~mA} / 48 \mathrm{~mA}$
A0 - A7, B0 - B7	A, B outputs for I74F652A	$750 / 60$	$15 \mathrm{~mA} / 36 \mathrm{~mA}$

Note to input and output loading and fan out table

1. One (1.0) FAST unit load is defined as: $20 \mu \mathrm{~A}$ in the high state and 0.6 mA in the low state.

PIN CONFIGURATION

CPAB 1	$24 \mathrm{~V}_{\mathrm{CC}}$
SAB 2	23 CPBA
OEAB 3	22 SBA
A0 4	21 OEBA
A1 5	20 B0
A2 6	19 B1
A3 7	18 B2
A4 8	17 B3
A5 9	16 B4
A6 10	15 B5
A7 11	14 B6
GND 12	13 B7
SF00401	

IEC/IEEE SYMBOL

LOGIC SYMBOL

LOGIC DIAGRAM

PIN CONFIGURATION

IEC/IEEE SYMBOL

LOGIC SYMBOL

LOGIC DIAGRAM

Transceivers/registers

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 74F651A and 74F652A. The select pins determine whether data is stored or
transferred through the device in real time. The output enable pins determine the direction of the data flow.

BUS MANAGEMENT FUNCTIONS

FUNCTION TABLE

INPUTS						DATA I/O		OPERATING MODE	
OEAB	OEBA	CPAB	CPBA	SAB	SBA	An	Bn	74F651A	74F652A
L	H	H or L	H or L	X	X	Input	Input	Isolation	Isolation
L	H	\uparrow	\uparrow	X	X	Input	Input	Store A and B data	Store A and B data
X	H	\uparrow	H or L	X	X	Input	Unspecified*	Store A, hold B	Store A hold B
H	H	\uparrow	\uparrow	L	X	Input	Output	Store A in both registers	Store A in both registers
L	X	H or L	\uparrow	X	X	Unspecified*	Input	Hold A, store B	Hold A, store B
L	L	\uparrow	\uparrow	X	L	Output	Input	Store B in both registers	Store B in both registers
L	L	X	X	X	L	Output	Input	Real time B data to A bus	Real time B data to A bus
L	L	X	H or L	X	H	Output	Input	Stored B data to A bus	Stored B data to A bus
H	H	X	X	L	X	Input	Output	Real time \bar{A} data to B bus	Real time A data to B bus
H	H	H or L	X	H	X	Input	Output	Stored \bar{A} data to B bus	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored \bar{A} data to B bus	Stored A data to B bus
H	L	H or L	H or L	H	H	Output	Output	Stored $\overline{\mathrm{B}}$ data to A bus	Stored B data to A bus

Notes to function table

1. $\mathrm{H}=$ High-voltage level
2. $L=$ Low-voltage level
3. * = The data output function may be enabled or disabled by various signals at the $\overline{O E B A}$ and OEAB inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition of the clock.
4. $\uparrow=$ Low-to-high clock transition
5. $X=$ Don't care

Transceivers/registers

ABSOLUTE MAXIMUM RATINGS

Operation beyond the limit set forth in this table may impair the useful life of the device.
Unless otherwise noted these limits are over the operating free air temperature range.

SYMBOL	PARAMETER		RATING	UNIT
V_{CC}	Supply voltage		-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	Input voltage		-0.5 to +7.0	V
IN	Input current		-30 to +5	mA
$\mathrm{V}_{\text {OUT }}$	Voltage applied to output in high output state		-0.5 to V_{CC}	V
lout	Current applied to output in low output state		72	mA
Tamb	Operating free air temperature range	Commercial range	0 to +70	${ }^{\circ} \mathrm{C}$
		Industrial range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		LIMITS			UNIT
			MIN	NOM	MAX	
V_{CC}	Supply voltage		4.5	5.0	5.5	V
V_{IH}	High-level input voltage		2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage				0.8	V
I/k	Input clamp current				-18	mA
${ }^{\text {IOH }}$	High-level output current				-15	mA
lob	Low-level output current	Commercial range			48	mA
		Industrial range (74F652A only)			36	mA
Tamb	Operating free air temperature range	Commercial range	0		+70	${ }^{\circ} \mathrm{C}$
		Industrial range (74F652A only)	-40		+85	${ }^{\circ} \mathrm{C}$

Transceivers/registers

DC ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range unless otherwise noted.

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$			LIMITS			UNIT			
			MIN	TYP²	MAX							
V_{OH}	High-level output voltage					$\begin{aligned} & V_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.4			V
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$	2.7	3.3				V			
			$\mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$	2.0				V			
$\mathrm{V}_{\text {OL }}$	Low-level output voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \\ & \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOL}=\mathrm{MAX}$	$\pm 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.55	V			
			$\pm 5 \% \mathrm{~V}_{\text {cc }}$			0.42	0.55	V				
V_{IK}	Input clamp voltage			$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{I}}$				-0.73	-1.2	V		
1	Input current at maximum input voltage	others	$\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=7.0 \mathrm{~V}$					100	$\mu \mathrm{A}$			
		A0-A7, B0-B7	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=5.5 \mathrm{~V}$					1	mA			
${ }_{1} \mathrm{H}$	High-level input current	OEAB, OEBA, СРАВ, СРBA, SAB, SBA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$					20	$\mu \mathrm{A}$			
IIL	Low-level input current	OEAB, $\overline{O E B A}$, СРАВ, СРBA, SAB, SBA	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.5 \mathrm{~V}$					-20	$\mu \mathrm{A}$			
$\mathrm{lozh}+\mathrm{IIH}^{\text {l }}$	Off-state output current, high-level voltage applied	A0-A7, B0-B7	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$					70	$\mu \mathrm{A}$			
lozL + IIL	Off-state output current, low-level voltage applied	A0-A7, B0-B7	$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$					-70	$\mu \mathrm{A}$			
Io	Output current ${ }^{3}$		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{0}=2.25 \mathrm{~V}$			-60		-160	mA			
ICC	Supply current (total)	$\mathrm{I}_{\mathrm{CCH}}$	$V_{C C}=M A X$				105	145	mA			
		$\mathrm{I}_{\text {CCL }}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}$				115	165	mA			
		$\mathrm{I}_{\text {ccz }}$	$\mathrm{V}_{C C}=\mathrm{MAX}$				115	160	mA			

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
3. I_{O} is tested under conditions that produce current approximately one half of the true short-circuit output current (los).

AC ELECTRICAL CHARACTERISTICS FOR 74F651A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	155	175		140		ns
$\begin{array}{\|l\|l\|} \hline \text { tpLH } \\ t_{\text {PHL }} \end{array}$	Propagation delay CPAB or CPBA to An or Bn	Waveform 1	$\begin{aligned} & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHL}} \\ & \hline \end{aligned}$	Propagation delay An or Bn to Bn or An	Waveform 2, 3	$\begin{aligned} & \hline 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.0 \end{aligned}$	$\begin{gathered} 8.5 \\ 10.0 \end{gathered}$	ns
tpli $t_{\text {PHL }}$	Propagation delay SAB or SBA to An or Bn	Waveform 2, 3	$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & \hline 12.0 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PZH}}$ $\mathrm{t}_{\mathrm{PzL}}$	Output enable time OEAB or OEBA to An or Bn	Waveform 7, 8	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns
$\begin{array}{\|l\|l} \hline \text { tphz } \\ \text { tpLZ } \end{array}$	Output disable time OEAB or OEBA to An or Bn	Waveform 7, 8	$\begin{aligned} & 1.5 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \\ & \hline \end{aligned}$	ns

AC SETUP REQUIREMENTS FOR 74F651A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS					UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low An or Bn to CPAB or CPBA	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low An or Bn to CPAB or CPBA	Waveform 4	0			0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low OEBA to OEAB or OEAB to OEBA	Waveform 5, 6	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low OEBA to OEAB or OEAB to OEBA	Waveform 5, 6	0			0		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse width, high or low CPAB or CPBA	Waveform 1	$\begin{aligned} & \hline 4.5 \\ & 3.5 \\ & \hline \end{aligned}$			$\begin{aligned} & \hline 4.5 \\ & 4.0 \\ & \hline \end{aligned}$		ns

Note to AC setup requirements for 74F651A:

1. Setup time is to protect against surge current caused by enabling 16 outputs (48 mA per output) simultaneously.

Transceivers/registers

AC ELECTRICAL CHARACTERISTICS FOR 74F652A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {max }}$	Maximum clock frequency	Waveform 1	155	175		140		140		ns
tpLH tphL	Propagation delay CPAB or CPBA to An or Bn	Waveform 1	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 7.0 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10.0 \\ 10.0 \end{array}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 11.5 \\ & 10.5 \\ & \hline \end{aligned}$	ns
$\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay An or Bn to Bn or An	Waveform 1	$\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & \hline 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 8.5 \end{gathered}$	ns
$\begin{aligned} & \hline \text { tpLH } \\ & t_{\text {tPHL }} \end{aligned}$	Propagation delay SAB or SBA to An or Bn	Waveform 2, 3	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 10.0 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 11.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 11.5 \end{aligned}$	ns
$\begin{aligned} & \text { tpzH } \\ & \text { tpZL } \\ & \hline \end{aligned}$	Output enable time ${ }^{1}$ OEAB or OEBA to An or Bn	Waveform 7, 8	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.0 \end{aligned}$	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tpLZ } \end{aligned}$	Output disable time OEAB or OEBA to An or Bn	Waveform 7, 8	$\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.0 \end{aligned}$	ns

AC SETUP REQUIREMENTS FOR 74F652A

SYMBOL	PARAMETER	TEST CONDITION	LIMITS							UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \\ \hline \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{Cc}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \\ \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low An or Bn to CPAB or CPBA	Waveform 4	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$			$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low An or Bn to CPAB or CPBA	Waveform 4	0			0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{su}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, high or low OEBA to OEAB or OEAB to OEBA	Waveform 5, 6	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$			$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		5.0 5.0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, high or low $\overline{O E B A}$ to OEAB or OEAB to OEBA	Waveform 5, 6	0			0		0		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Pulse width, high or low CPAB or CPBA	Waveform 1	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$			4.5 4.0		4.5 4.0		ns

Note to AC setup requirements for 74F652A

1. Setup time is to protect against surge current caused by enabling 16 outputs (48 mA per output) simultaneously.

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$.
The shaded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation delay for clock input to output, clock pulse width, and maximum clock frequency

Waveform 3. Propagation delay for An to Bn or Bn to An and SAB or SBA to An or Bn

Waveform 5. OEBA to OEAB setup time and hold times

Waveform 7. 3-State output enable time to high level and output disable time from high level

Waveform 2. Propagation delay for An to Bn or Bn to An and SAB or SBA to An or Bn

Waveform 4. Data setup time and hold times

Waveform 6. OEAB to OEBA setup time and hold times

Waveform 8. 3-State output enable time to low level and output disable time from low level

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1} $\mathrm{min} \text {. }$	A_{2} max.	b	b_{1}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	\mathbf{e}_{1}	L	M_{E}	M_{H}	w	$\underset{\max .}{Z^{(1)}}$
mm	4.70	0.38	3.94	$\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$	$\begin{aligned} & 6.73 \\ & 6.48 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.13 \\ & 7.62 \end{aligned}$	$\begin{gathered} 10.03 \\ 7.62 \end{gathered}$	0.25	2.05
inches	0.185	0.015	0.155	$\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$	$\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$	$\begin{aligned} & 0.265 \\ & 0.255 \end{aligned}$	0.100	0.300	$\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$	0.01	0.081

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT222-1		MS-001AF			95-03-11

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	2.65	$\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$	$\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$	1.27	$\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$	1.4	$\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$	0.25	0.25	0.1	0.9 0.4	$\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$
inches	0.10	$\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$	0.050	$\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$	0.055	$\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT137-1	$075 E 05$	MS-013AD			$-95-01-24$	

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors
811 East Arques Avenue

P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381
© Copyright Philips Electronics North America Corporation 1999
All rights reserved. Printed in U.S.A.
Date of release: 06-99
Document order number:
939775006142

