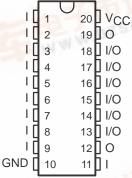
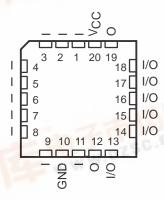
- High-Performance Operation:
 Propagation Delay . . . 15 ns Max
- Power-Up Clear on Registered Devices (All Register Outputs are Set High, but Voltage Levels at the Output Pins Go Low)
- Package Options Include Ceramic Flat (W)
 Packages, Ceramic Chip Carriers (FK), and
 Ceramic (J) 300-mil DIPs
- Dependable Texas Instruments Quality and Reliability

DEVICE	I INPUTS	3-STATE O OUTPUTS	REGISTERED Q OUTPUTS	I/O PORTS		
PAL16L8	10	2	0	6		
PAL16R4	8	0 4 (3-state bu		4		
PAL16R6	8	0	6 (3-state buffers)	2		
PAL16R8	8	0 8 (3-state buffer		0		


description

These programmable array logic devices feature high speed and functional equivalency when compared with currently available devices. These IMPACT-XTM circuits combine the latest Advanced Low-Power Schottky technology with proven titanium-tungsten fuses to provide reliable, high-performance substitutes for conventional TTL logic. Their easy programmability allows for quick design of custom functions and typically results in a more compact circuit board. In addition, chip carriers are available for futher reduction in board space.

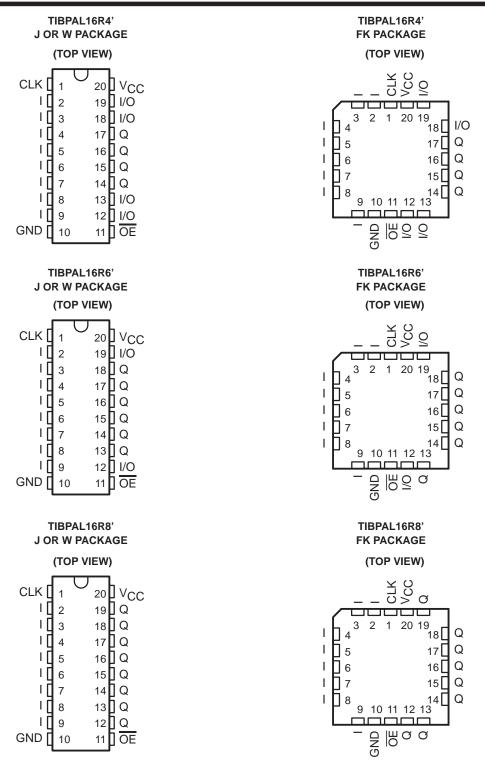
The TIBPAL16' M series is characterized for operation over the full military temperature range of –55°C to 125°C.



(TOP VIEW)

TIBPAL16L8'
FK PACKAGE

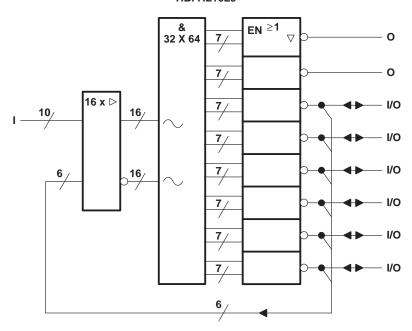
(TOP VIEW)

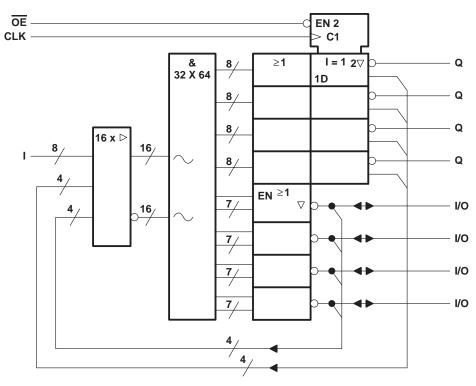


Pin assignments in operating mode

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996


Pin assignments in operating mode

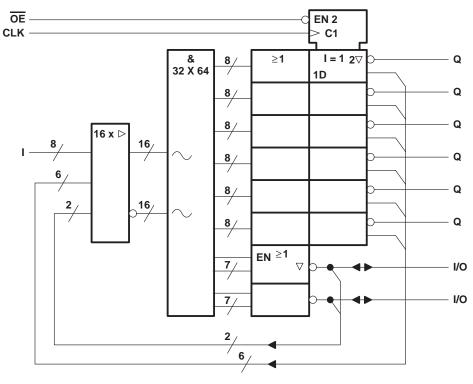

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

functional block diagrams (positive logic)

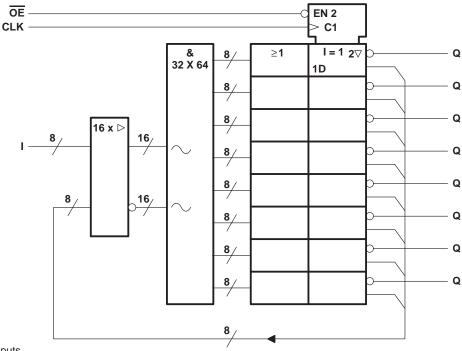
TIBPAL16L8'

TIBPAL16R4'

 \sim denotes fused inputs



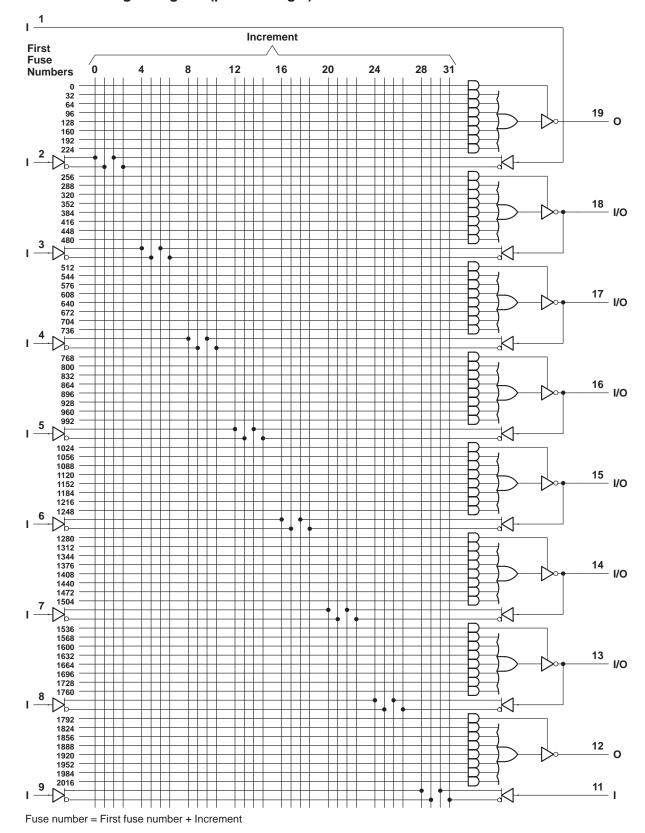
TIBPAL16L8-15M, TIBPAL16R4-15M, TIBPAL16R6-15M, TIBPAL16R8-15M HIGH-PERFORMANCE $IMPACT^{TM}$ $PAL^{\textcircled{\tiny{B}}}$ CIRCUITS


SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

functional block diagrams (positive logic)

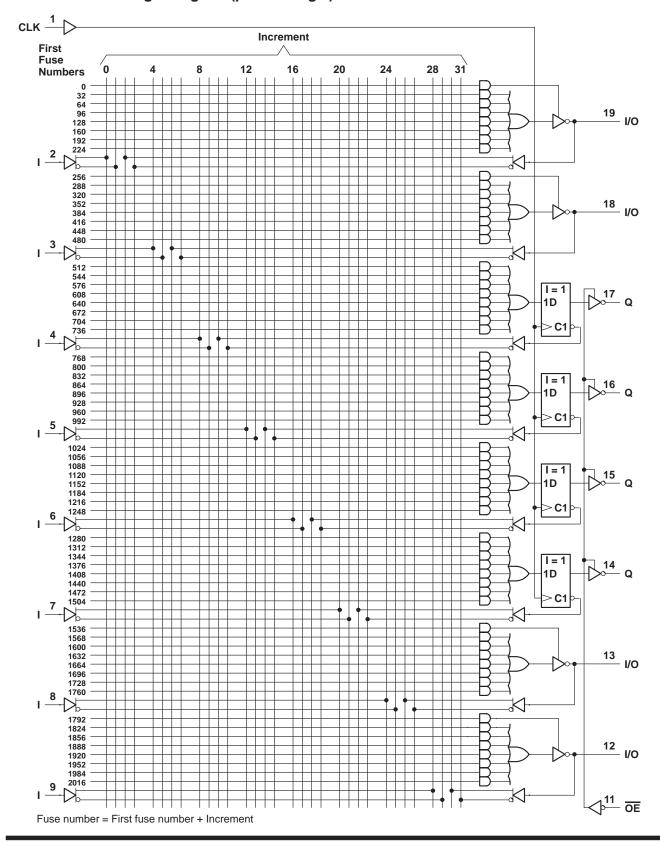
TIBPAL16R6

TIBPAL16R8'

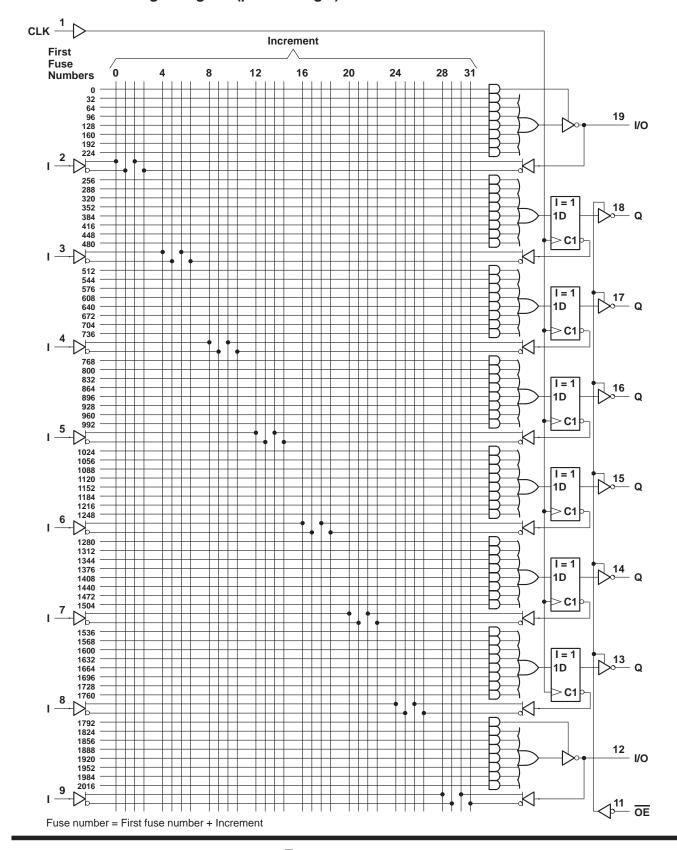


 \sim denotes fused inputs

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

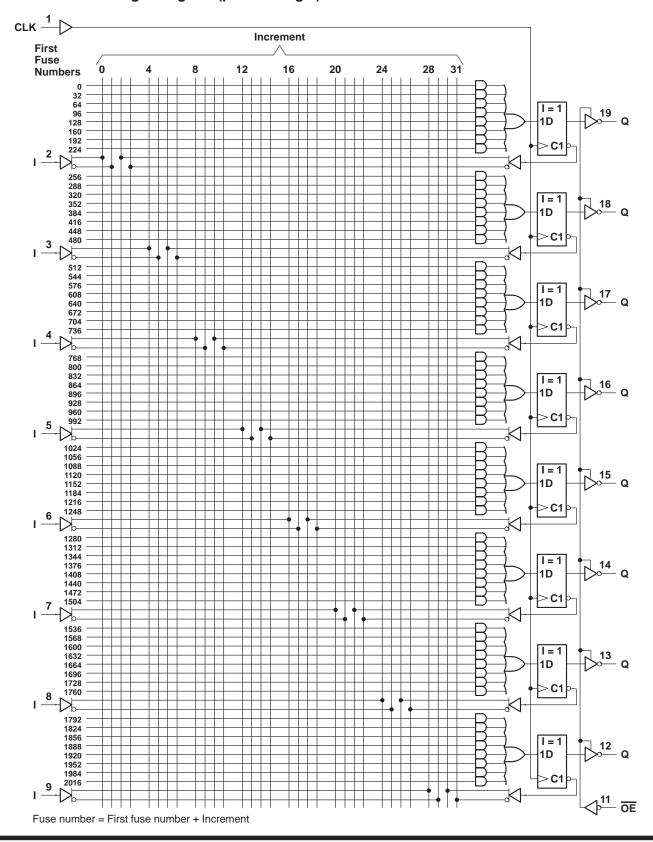

TIBPAL16L8-15M logic diagram (positive logic)

TIBPAL16L8-15M, TIBPAL16R4-15M, TIBPAL16R6-15M, TIBPAL16R8-15M HIGH-PERFORMANCE $IMPACT^{TM}$ $PAL^{\textcircled{\tiny B}}$ CIRCUITS


SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

TIBPAL16R4-15M logic diagram (positive logic)

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996


TIBPAL16R6-15M logic diagram (positive logic)

TIBPAL16L8-15M, TIBPAL16R4-15M, TIBPAL16R6-15M, TIBPAL16R8-15M HIGH-PERFORMANCE $IMPACT^{TM}$ $PAL^{\textcircled{\tiny B}}$ CIRCUITS

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

TIBPAL16R8-15M logic diagram (positive logic)

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

Storage temperature range-65°C to 150°C

recommended operating conditions

				MIN	NOM	MAX	UNIT
Vсс	Supply voltage			4.5	5	5.5	V
VIH	High-level input voltage			2		5.5	V
V_{IL}	Low-level input voltage					0.8	V
IOH	High-level output current					-2	mA
loL	Low-level output current					12	mA
fclock	Clock frequency		0		50	MHz	
	Bullet describes about (see Nata 2)		9			no	
t _W	Pulse duration, clock (see Note 2)		10			ns	
t _{su}	Setup time, input or feedback before clock↑			15			ns
th	Hold time, input or feedback after clock↑			0			ns
TA	Operating free-air temperature			-55	25	125	°C

NOTE 2: The total clock period of clock high and clock low must not exceed clock frequency, f_{clock}. The minimum pulse durations specified are only for clock high or low, but not for both simultaneously.

electrical characteristics over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS		TIBP	TIBPAL16R4-15M				
				MIN	TYP [‡]	MAX	UNIT		
VIK		V _{CC} = 4.5 V,	$I_{I} = -18 \text{ mA}$				-1.5	V	
Vон		V _{CC} = 4.5 V,	$I_{OH} = -2 \text{ mA}$		2.4	3.3		V	
VOL		V _{CC} = 4.5 V,	I _{OL} = 12 mA			0.35	0.5	V	
1	Outputs	V-0 F-5 V	Va 27V				20		
lozh	I/O ports	V _{CC} = 5.5 V,	$V_0 = 2.7 \text{ V}$				100	μΑ	
1	Outputs	V 55V	V- 0.4 V				-20		
IOZL	I/O ports	$V_{CC} = 5.5 \text{ V},$	$V_0 = 0.4 \text{ V}$				-250	μΑ	
1.	Pin 1, 11	V 55V	\/, E E \/	V _I = 5.5 V			0.2	mA	
li .	All others	V _{CC} = 5.5 V,	V = 5.5 V			0.1			
	Pin 1, 11						50		
ΊΗ	I/O ports	V _{CC} = 5.5 V,	$V_{I} = 2.7 V$				100	μΑ	
	All others						25		
I _{IL}		V _{CC} = 5.5 V,	V _I = 0.4 V				-0.25	mA	
los§		V _{CC} = 5.5 V,	V _O = 0.5 V		-30		-250	mA	
ICC		V _{CC} = 5.5 V,	V _I = 0,	Outputs open		170	220	mA	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set VO at 0.5 V to avoid test equipment degradation.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: These ratings apply except for programming pins during a programming cycle.

TIBPAL16L8-15M, TIBPAL16R4-15M, TIBPAL16R6-15M, TIBPAL16R8-15M HIGH-PERFORMANCE $IMPACT^{TM}$ $PAL^{\textcircled{\tiny B}}$ CIRCUITS

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

electrical characteristics over recommended operating free-air temperature range

PARAMETER			TEST CONDITIONS		TIBP	TIBPAL16L8-15M TIBPAL16R6-15M TIBPAL16R8-15M			
					MIN	TYP†	MAX		
٧ıĸ		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$				-1.5	V	
Vон		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -2 \text{ mA}$		2.4	3.3		V	
VOL		$V_{CC} = 4.5 \text{ V},$	$I_{OL} = 12 \text{ mA}$			0.35	0.5	V	
	Outputs	V 55V	V- 07V	V _O = 2.7 V			20	μΑ	
IOZH	I/O ports	V _{CC} = 5.5 V,	VO = 2.7 V				100		
	Outputs	V 55V	V 0.4V	V _O = 0.4 V			-20	^	
IOZL	I/O ports	$V_{CC} = 5.5 \text{ V},$	v _O = 0.4 v				-250	μΑ	
1.	Pin 1, 11	V 55V	V. 55V	V 55V		0.2			
ΙΙ	All others	V _{CC} = 5.5 V,	V	$V_{I} = 5.5 \text{ V}$		0.1			
	Pin 1, 11						50		
۱н	I/O ports	$V_{CC} = 5.5 V$,	$V_{I} = 2.7 V$	V _I = 2.7 V		100			
	All others	1				20			
	I/O ports		V 0.4V	V 04V			-0.25		
All others		$V_{CC} = 5.5 \text{ V},$ $V_{I} = 0.4 \text{ V}$				-0.2	mA		
los‡	•	V _{CC} = 5.5 V,	V _O = 0.5 V		-30		-250	mA	
ICC		V _{CC} = 5.5 V,	V _I = 0,	Outputs open		170	220	mA	

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max} §				50			MHz
^t pd	I, I/O	O, I/O]		8	15	ns
^t pd	CLK↑	Q	R1 = 390 Ω ,		7	12	ns
t _{en}	OE↓	Q	$R2 = 750 \Omega$,		8	12	ns
^t dis	OE↑	Q	See Figure 1		7	12	ns
t _{en}	I, I/O	O, I/O]		8	15	ns
^t dis	I, I/O	O, I/O			8	15	ns

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Not more than one output should be shorted at a time and the duration of the short circuit should not exceed one second. Set V_O at 0.5 V to avoid test equipment degradation.

[§] Maximum operating frequency and propagation delay are specified for the basic building block. When using feedback, limits must be calculated accordingly.

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

programming information

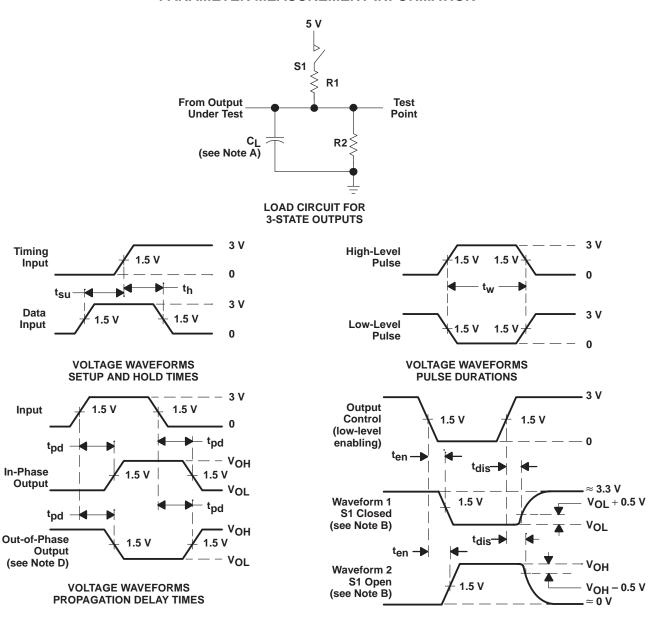
Texas Instruments programmable logic devices can be programmed using widely available software and inexpensive device programmers.

The TIBPAL16R4-15M with date codes prior to 9616A must be programmed according to programming algorithms/specifications corresponding to the TIBPAL16R4-12C. The TIBPAL16R4-15M with date code 9616A or newer must be programmed according to programming algorithms/specifications corresponding to the TIBPAL16R4-10C.

Regardless of date code, the TIBPAL16L8-15M, TIBPAL16R6-15M, and TIBPAL16R8-15M must be programmed according to programming algorithms/specifications corresponding to the TIBPAL16L8-12C, TIBPAL16R6-12C, and TIBPAL16R8-12C, respectively. Failure to do so may damage the devices.

Complete programming specifications, algorithms, and the latest information on hardware, software, and firmware are available upon request. Information on programmers capable of programming Texas Instruments programmable logic is also available, upon request, from the nearest TI field sales office, local authorized TI distributor, or by calling Texas Instruments at (214) 997-5666.

Table 1. Programming Reference Table (see Note 3)


DEVICE	DESC SMD NUMBER	FAMILY/PINOUT CODE
TIBPAL16L8-15MJB	5962-8515509RA	9A/17
TIBPAL16L8-15MFKB	5962-85155092A	9A/717
TIBPAL16L8-15MWB	5962-8515509SA	9A/17
TIBPAL16R4-15MJB	5962-8515512RA	A1/24
TIBPAL16R4-15MFKB	5962-85155122A	0A1/724
TIBPAL16R4-15MWB	5962-8515512SA	A1/24
TIBPAL16R6-15MJB	5962-8515511RA	9A/24
TIBPAL16R6-15MFKB	5962-85155112A	9A/724
TIBPAL16R6-15MWB	5962-8515511SA	9A/24
TIBPAL16R8-15MJB	5962-8515510RA	9A/24
TIBPAL16R8-15MFKB	5962-85155102A	9A/724
TIBPAL16R8-15MWB	5962-8515510SA	9A/24

NOTE 3: Programming information for TIBPAL16R4-15M with date codes 9616A or newer. Programming information for TIBPAL16L8-15M, TIBPAL16R6-15M, and TIBPAL16R8-15M regardless of date code.

SRPS018A - D3338, JANUARY 1986 - REVISED MAY 1996

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES, 3-STATE OUTPUTS

- NOTES: A. C_L includes probe and jig capacitance and is 50 pF for t_{pd} and t_{en}, 5 pF for t_{dis}.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses have the following characteristics: PRR \leq 10 MHz, t_r and $t_f \leq$ 2 ns, duty cycle = 50%.
 - D. When measuring propagation delay times of 3-state outputs, switch S1 is closed.
 - E. Equivalent loads may be used for testing.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated