SONY

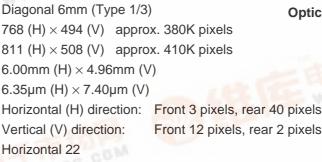
ICX058CL

Diagonal 6mm (Type 1/3) CCD Image Sensor for EIA Black-and-White Video Camera

Description

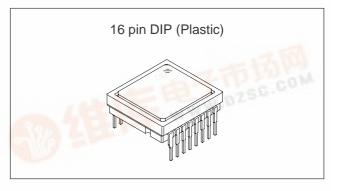
The ICX058CL is an interline CCD solid-state image sensor suitable for EIA black-and-white video cameras. Compared with the current product ICX058AL, sensitivity is improved drastically through the adoption of Super HAD CCD technology.

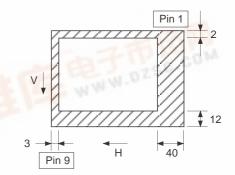
This chip features a field period readout system and an electronic shutter with variable charge-storage time.


Features

- High sensitivity (+4dB at F8, +3dB at F1.2 compared with ICX058AL)
- High resolution, low smear and low dark current
- Excellent antiblooming characteristics
- Continuous variable-speed shutter
- Horizontal register: 5V drive
- Reset gate: 5V drive

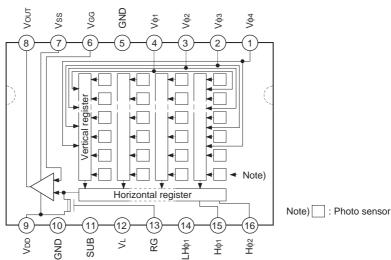
Device Structure


- Interline CCD image sensor
- Image size:
- Number of effective pixels:
- Number of total pixels:
- Chip size:
- Unit cell size:
- Optical black:
- Number of dummy bits:


Substrate material:

Vertical 1 (even field only)

Silicon


Optical black position (Top View)

Super HAD CCD .

*Super HAD CCD is a registered trademark of Sony Corporation. Super HAD CCD is a CCD that drastically improves sensitivity by introducing newly developed semiconductor technology by Sony Corporation into Sony's high-performance HAD (Hole-Accumulation Diode) sensor.

proves the right to change products and specifications without prior notice. This information does not convey any license by implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

(Top View)

Pin Description

Pin No.	Symbol	Description	Pin No.	Symbol	Description
1	Vø4	Vertical register transfer clock	9	Vdd	Output amplifier drain supply
2	Vфз	Vertical register transfer clock	10	GND	GND
3	Vø2	Vertical register transfer clock	11	SUB	Substrate (Overflow drain)
4	Vφ1	Vertical register transfer clock	12	VL	Protective transistor bias
5	GND	GND	13	RG	Reset gate clock
6	Vgg	Output amplifier gate bias	14	LHø1	Horizontal register final stage transfer clock
7	Vss	Output amplifier source	15	Hφ1	Horizontal register transfer clock
8	Vout	Signal output	16	Hø2	Horizontal register transfer clock

Absolute Maximum Ratings

	Item	Ratings	Unit	Remarks
Substrate voltage SUB – C	GND	-0.3 to +55	V	
Supply voltage	Vdd, Vout, Vss – GND	-0.3 to +18	V	
Supply voltage	Vdd, Vout, Vss – SUB	–55 to +10	V	
	Vφ1, Vφ2, Vφ3, Vφ4– GND	-15 to +20	V	
Vertical clock input voltage	Vφ1, Vφ2, Vφ3, Vφ4 – SUB	to +10	V	
Voltage difference betwee	n vertical clock input pins	to +15	V	*1
Voltage difference betwee	n horizontal clock input pins	to +17	V	
Ηφ1, Ηφ2 Vφ4		-17 to +17	V	
Ηφ1, Ηφ2, LΗφ1, RG, Vgg –	GND	-10 to +15	V	
Ηφ1, Ηφ2, LΗφ1, RG, Vgg-	SUB	-55 to +10	V	
VL-SUB		-65 to +0.3	V	
Vφ1, Vφ2, Vφ3, Vφ4, Vdd, Vd	DUT – VL	-0.3 to +30	V	
RG – VL		-0.3 to +24	V	
Vgg, Vss, Hø1, Hø2, LHø1 –	- VL	-0.3 to +20	V	
Storage temperature		-30 to +80	°C	
Operating temperature		-10 to +60	°C	

*1 +27V (Max.) when clock width < 10 μ s, clock duty factor < 0.1%.

ICX058CL

Bias Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Output amplifier drain voltage	Vdd	14.55	15.0	15.45	V	
Output amplifier gate voltage	Vgg	3.8	4.2	4.65	V	
Output amplifier source	Vss		ounded v 20Ω resis			±5%
Substrate voltage adjustment range	Vsub	9.0		18.5	V	*1
Fluctuation range after substrate voltage adjustment	ΔVsub	-3		+3	%	
Reset gate clock voltage adjustment range	Vrgl	1.0		4.0	V	*1, *6
Fluctuation range after reset gate clock voltage adjustment	ΔV rgl	-3		+3	%	
Protective transistor bias	VL		*2			

DC Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Output amplifier drain current	ldd		5		mA	
Input current	lin1			1	μA	*3
Input current	lin2			10	μA	*4

*1 Indications of substrate voltage (Vsub) · reset gate clock voltage (VRGL) setting value.

The setting values of substrate voltage and reset gate clock voltage are indicated on the back of the image sensor by a special code. Adjust substrate voltage (V_{SUB}) and reset gate clock voltage (V_{RGL}) to the indicated voltage. Fluctuation range after adjustment is ±3%.

VSUB code one character indication

VRGL code one character indication

 \uparrow \uparrow

VRGL code VSUB code

Code and optimal setting correspond to each other as follows.

Vrgl code	1	2	3	4	5	6	7
Optimal setting	1.0	1.5	2.0	2.5	3.0	3.5	4.0

Vsub code	E	f	G	h	J	Κ	L	m	Ν	Ρ	Q	R	S	Т	U	V	W	Х	Υ	Ζ
Optimal setting	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0	13.5	14.0	14.5	15.0	15.5	16.0	16.5	17.0	17.5	18.0	18.5

<Example> "5L" \rightarrow VRGL = 3.0V VSUB = 12.0V

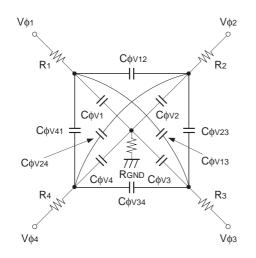
*2 VL setting is the VvL voltage of the vertical transfer clock waveform. *3 1) Current to each pin when 18V is applied to VpD Volt. Vss and 1

- 1) Current to each pin when 18V is applied to VDD, VOUT, Vss and SUB pins, while pins that are not tested are grounded.
 - 2) Current to each pin when 20V is applied sequentially to Vφ1, Vφ2, Vφ3 and Vφ4 pins, while pins that are not tested are grounded. However, 20V is applied to SUB pin.
 - 3) Current to each pin when 15V is applied sequentially to RG, LH\otherson, H\otherson 1, H\otherson 2, LH\otherson 2, LH\otherson 1, H\otherson 2, LH\otherson 2, LH\othe
 - 4) Current to VL pin when 30V is applied to Vφ1, Vφ2, Vφ3, Vφ4, VDD and VOUT pins or when, 24V is applied to RG pin or when, 20V is applied to VGG, Vss, Hφ1, Hφ2 and LHφ1 pins, while VL pin is grounded. However, GND and SUB pins are left open.
- ^{*4} Current to SUB pin when 55V is applied to SUB pin, while pins that are not tested are grounded.

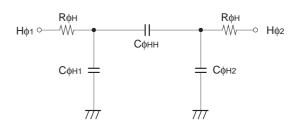
Clock Voltage Conditions

Item	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Readout clock voltage	Vvт	14.55	15.0	15.45	V	1	
	Vvh1, Vvh2	-0.05	0	0.05	V	2	Vvн = (Vvн1 + Vvн2)/2
	Vvнз, Vvн4	-0.2	0	0.05	V	2	
	Vvl1, Vvl2, Vvl3, Vvl4	-9.0	-8.5	-8.0	V	2	$V_{VL} = (V_{VL3} + V_{VL4})/2$
	Vφv	7.8	8.5	9.05	V	2	$V \phi v = V v Hn - V v Ln (n = 1 to 4)$
Vertical transfer clock	Vvh1 — Vvh2			0.1	V	2	
voltage	Vvнз — Vvн	-0.25		0.1	V	2	
	Vvн4 — Vvн	-0.25		0.1	V	2	
	Vvнн			0.5	V	2	High-level coupling
	Vvhl			0.5	V	2	High-level coupling
	Vvlh			0.5	V	2	Low-level coupling
	Vvll			0.5	V	2	Low-level coupling
Horizontal transfer	Vфн, Vфlн	4.75	5.0	5.25	V	3	*5
clock voltage	Vhl, Vlhl	-0.05	0	0.05	V	3	*5
Reset gate clock	Vørg	4.5	5.0	5.5	V	4	*6
voltage	Vrglh – Vrgll			0.8	V	4	Low-level coupling
Substrate clock voltage	Vфsuв	22.5	23.5	24.5	V	5	

*5 The horizontal final stage transfer clock input pin LH^{\u03c41} is connected to the horizontal transfer clock input pin H^{\u03c41}.

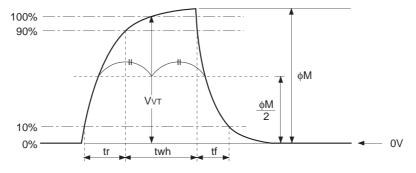

*6 The reset gate clock voltage need not be adjusted when reset gate clock is driven when the specifications are as given below. In this case, the reset gate clock voltage setting indicated on the back of the image sensor has not significance.

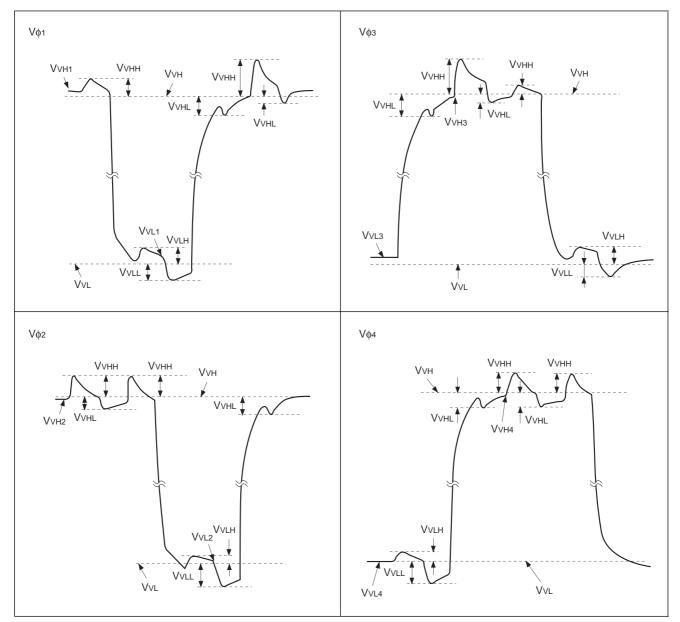
Item	Symbol	Min.	Тур.	Max.	Unit	Waveform diagram	Remarks
Reset gate clock	Vrgl	-0.2	0	0.2	V	4	
voltage	Vørg	8.5	9.0	9.5	V	4	


ICX058CL

Clock Equivalent Circuit Constant

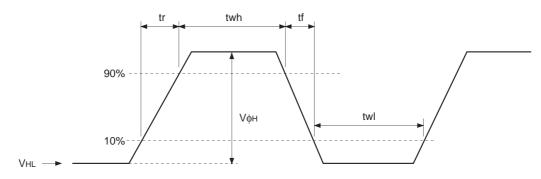
Item	Symbol	Min.	Тур.	Max.	Unit	Remarks
Capacitance between vertical transfer	Cφν1, Cφν3		1000		pF	
clock and GND	C φV2, C φV4		560		pF	
	Сфv12, Сфv34		470		pF	
Capacitance between vertical transfer	Сфv23, Сфv41		330		pF	
clocks	СфV13		220		pF	
	СфV24		100		pF	
Capacitance between horizontal transfer clock and GND	Сфн1, Сфн2		47		pF	
Capacitance between horizontal transfer clocks	Сфнн		43		pF	
Capacitance between horizontal final stage transfer clock and GND	Сфін		8		pF	
Capacitance between reset gate clock and GND	Cộrg		8		pF	
Capacitance between substrate clock and GND	Сфѕив		270		pF	
Vertical transfer clock series resistor	R1, R2, R3, R4		80		Ω	
Vertical transfer clock ground resistor	Rgnd		15		Ω	
Horizontal transfer clock series resistor	Rфн		15		Ω	


Vertical transfer clock equivalent circuit

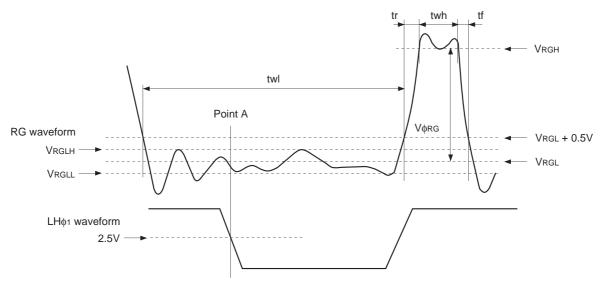

Horizontal transfer clock equivalent circuit

Drive Clock Waveform Conditions

(1) Readout clock waveform



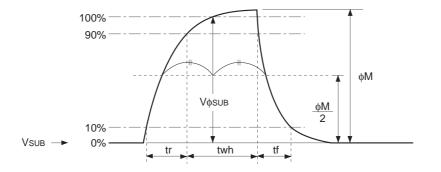
(2) Vertical transfer clock waveform



 $V_{VH} = (V_{VH1} + V_{VH2})/2$ $V_{VL} = (V_{VL3} + V_{VL4})/2$ $V_{\varphi V} = V_{VHN} - V_{VLN} (n = 1 \text{ to } 4)$

(3) Horizontal transfer clock waveform

(4) Reset gate clock waveform


VRGLH is the maximum value and VRGLL is the minimum value of the coupling waveform during the period from Point A in the above diagram until the rising edge of RG.

In addition, $\mathsf{V}\mathsf{RGL}$ is the average value of $\mathsf{V}\mathsf{RGLH}$ and $\mathsf{V}\mathsf{RGLL}.$

VRGL = (VRGLH + VRGLL)/2

Assuming VRGH is the minimum value during the interval twh, then:

 $V\phi RG = VRGH - VRGL$

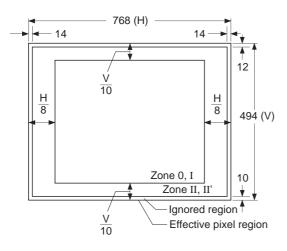
Clock Switching Characteristics

Note) Because the horizontal final stage transfer clock $LH\phi_1$ is connected to the horizontal transfer clock $H\phi_1$, specifications will be the same as $H\phi_1$.

	ltem	Symbol		twh			twl			tr			tf		Unit	Remarks
	Item	Symbol	Min.	Тур.	Max.	Unit	Remains									
Rea	dout clock	VT	2.3	2.5						0.5			0.5		μs	During readout
Vert cloc	ical transfer k	Vφ1, Vφ2, Vφ3, Vφ4										15		250	ns	*1
<u>– ×</u>	During	Hø1, LHø1	18	24		19.5	26			10	17.5		10	17.5		*2
onta r clc	imaging	Hø2	21	26		19	24			10	15		10	15	ns	-
Horizontal transfer clock	During parallel-serial	Hø1, LHø1		5.38						0.01			0.01			
tra T	conversion	Hø2					5.38			0.01			0.01		μs	
Res	et gate clock	φRG	11	13			51			3			3		ns	
Sub	strate clock	фѕив	1.5	1.8							0.5			0.5	μs	During drain charge

*1 When vertical transfer clock driver CXD1267AN is used.

*2 tf \geq tr - 2ns, and the cross-point voltage (VcR) for the H $\phi_1 \cdot$ LH ϕ_1 rising side of the H $\phi_1 \cdot$ LH ϕ_1 and H ϕ_2 waveforms must be at least 2.5V.


Item	Symbol		two	Unit	Remarks		
nem	Symbol	Min.	Тур.	Max.	Onit	Remarks	
Horizontal transfer clock	Ηφ1 · LΗφ1, Ηφ2	16	20		ns	*3	

*3 The overlap period for twh and twl of horizontal transfer clocks $H\phi_1 \cdot LH\phi_1$ and $H\phi_2$ is two.

Image Sensor Characteristics

Item	Symbol	Min.	Тур.	Max.	Unit	Measurement method	Remarks
Sensitivity	S	360	460		mV	1	
Saturation signal	Vsat	600			mV	2	Ta = 60°C
Smear	Sm		0.002	0.007	%	3	
Video signal shading	SH			20	%	4	Zone 0 and I
				25	%	4	Zone 0 to II'
Dark signal	Vdt			2	mV	5	Ta = 60°C
Dark signal shading	ΔVdt			1	mV	6	Ta = 60°C
Flicker	F			2	%	7	
Lag	Lag			0.5	%	8	

Zone Definition of Video Signal Shading

Image Sensor Characteristics Measurement Method

○ Measurement conditions

- 1) In the following measurements, the substrate voltage and the reset gate clock voltage are set to the values indicated on the device, and the device drive conditions are at the typical values of the bias and clock voltage conditions.
- 2) In the following measurements, spot blemishes are excluded and, unless otherwise specified, the optical black (OB) level is used as the reference for the signal output, and the value measured at point [*A] in the drive circuit example is used.

O Definition of standard imaging conditions

1) Standard imaging condition I:

Use a pattern box (luminance 706cd/m², color temperature of 3200K halogen source) as a subject. (Pattern for evaluation is not applicable.) Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter and image at F8. The luminous intensity to the sensor receiving surface at this point is defined as the standard sensitivity testing luminous intensity.

2) Standard imaging condition II:

Image a light source (color temperature of 3200K) with a uniformity of brightness within 2% at all angles. Use a testing standard lens with CM500S (t = 1.0mm) as an IR cut filter. The luminous intensity is adjusted to the value indicated in each testing item by the lens diaphragm.

1. Sensitivity

Set to standard imaging condition I. After selecting the electronic shutter mode with a shutter speed of 1/250s, measure the signal output (Vs) at the center of the screen and substitute the value into the following formula.

$$S = Vs \times \frac{250}{60} [mV]$$

2. Saturation signal

Set to standard imaging condition II. After adjusting the luminous intensity to 10 times the intensity with average value of the signal output, 200mV, measure the minimum value of the signal output.

3. Smear

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity to 500 times the intensity with average value of the signal output, 200mV. When the readout clock is stopped and the charge drain is executed by the electronic shutter at the respective H blankings, measure the maximum value VSm [mV] of the signal output and substitute the value into the following formula.

$$Sm = \frac{VSm}{200} \times \frac{1}{500} \times \frac{1}{10} \times 100 \, [\%] \, (1/10V \text{ method conversion value})$$

4. Video signal shading

Set to standard imaging condition II. With the lens diaphragm at F5.6 to F8, adjust the luminous intensity so that the average value of the signal output is 200mV. Then measure the maximum (Vmax [mV]) and minimum (Vmin [mV]) values of the signal output and substitute the values into the following formula.

SH = (Vmax – Vmin)/200 × 100 [%]

5. Dark signal

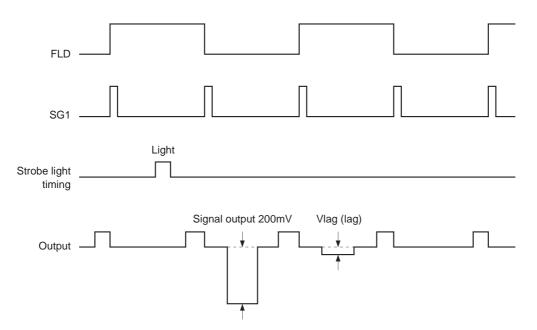
Measure the average value of the signal output (Vdt [mV]) with the device ambient temperature 60°C and the device in the light-obstructed state, using the horizontal idle transfer level as a reference.

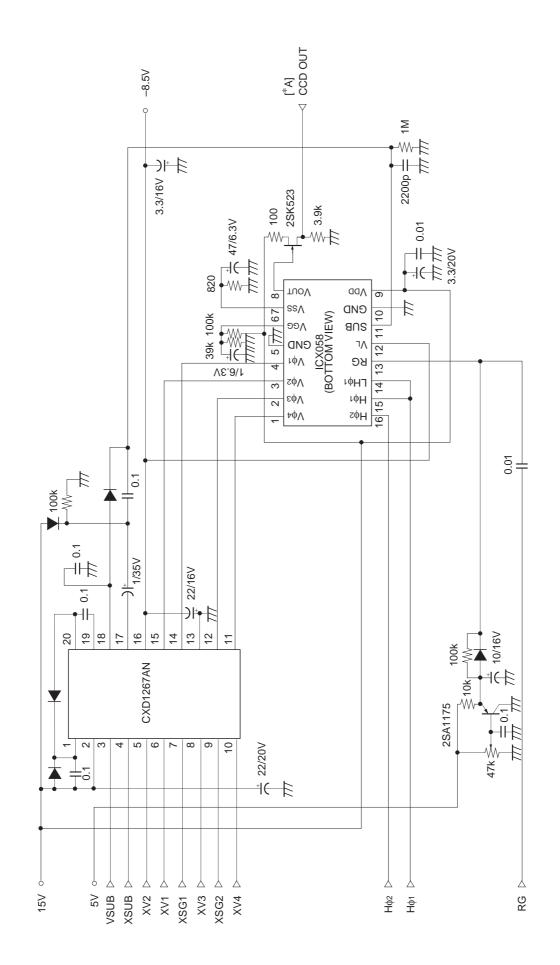
6. Dark signal shading

After measuring 5, measure the maximum (Vdmax [mV]) and minimum (Vdmin [mV]) values of the dark signal output and substitute the values into the following formula.

 $\Delta Vdt = Vdmax - Vdmin [mV]$

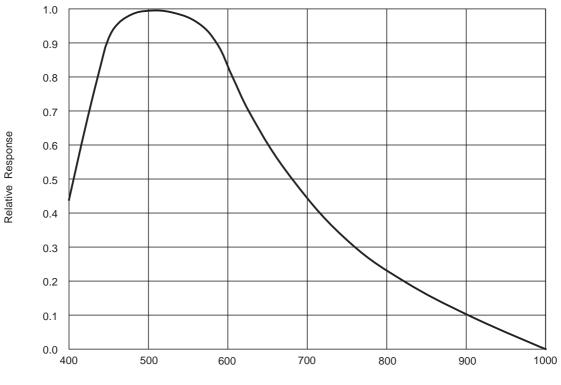
7. Flicker

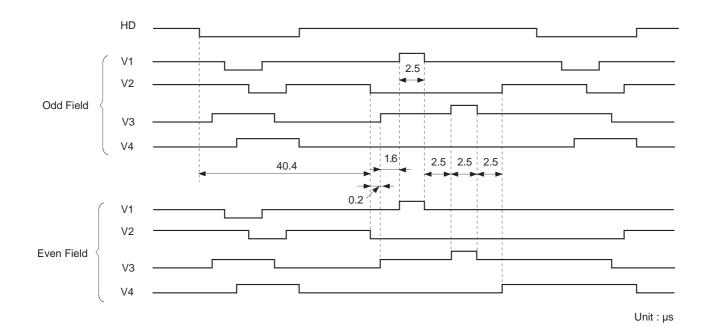

Set to standard imaging condition II. Adjust the luminous intensity so that the average value of the signal output is 200mV, and then measure the difference in the signal level between fields (Δ Vf [mV]). Then substitute the value into the following formula.


 $F = (\Delta V f/200) \times 100 [\%]$

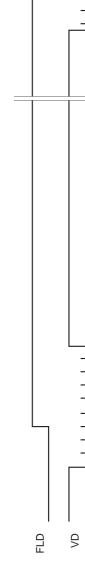
8. Lag

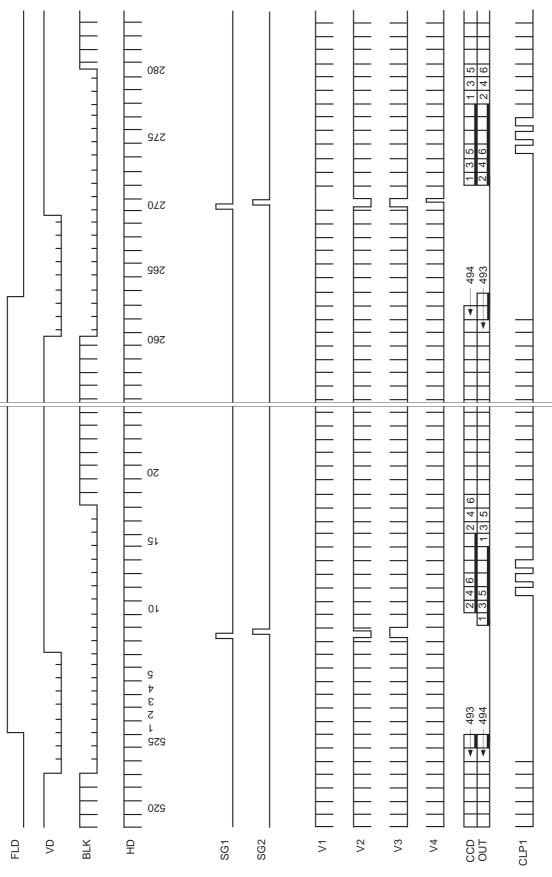
Adjust the signal output value generated by strobe light to 200mV. After setting the strobe light so that it strobes with the following timing, measure the residual signal (Vlag). Substitute the value into the following formula.


Lag = (Vlag/200) × 100 [%]



Drive Circuit


(Includes lens characteristics, excludes light source characteristics)

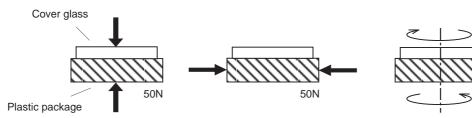

Wave Length [nm]

Sensor Readout Clock Timing Chart

Drive Timing Chart (Vertical Sync)

	30000000000000000000000000000000000000	RG TURUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMU		
	H1/LH1][[[[[[0]]]][[0]][[0]][[0]][[0]][[0]][RG THE STATE		
DH HD	H1/LH1 H2	RG SHP SHD	<pre></pre>	CLP1 SUB

Notes on Handling


1) Static charge prevention

CCD image sensors are easily damaged by static discharge. Before handling be sure to take the following protective measures.

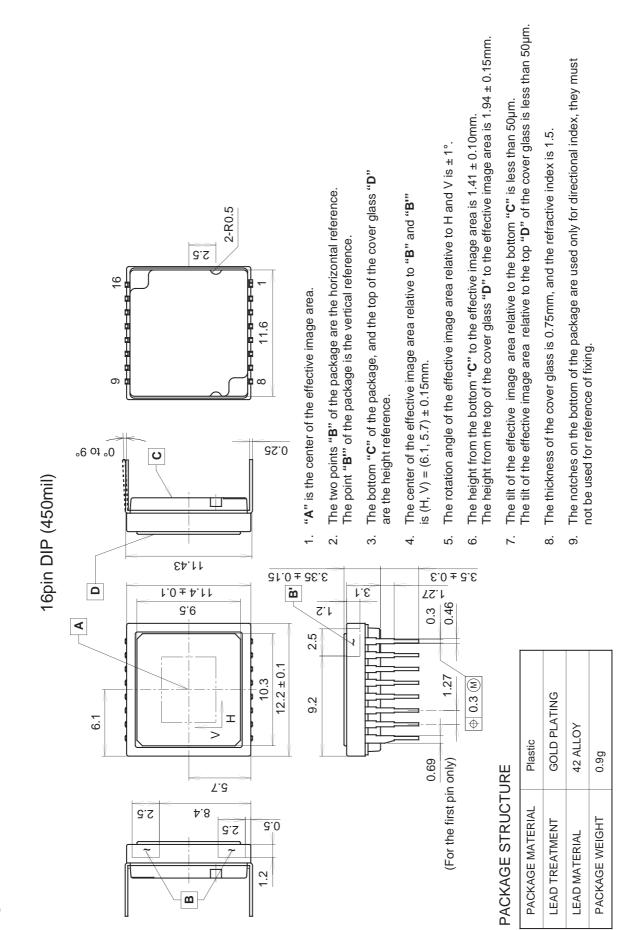
- a) Either handle bare handed or use non-chargeable gloves, clothes or material.
- Also use conductive shoes.
- b) When handling directly use an earth band.
- c) Install a conductive mat on the floor or working table to prevent the generation of static electricity.
- d) Ionized air is recommended for discharge when handling CCD image sensor.
- e) For the shipment of mounted substrates, use boxes treated for the prevention of static charges.
- 2) Soldering
 - a) Make sure the package temperature does not exceed 80°C.
 - b) Solder dipping in a mounting furnace causes damage to the glass and other defects. Use a ground 30W soldering iron and solder each pin in less than 2 seconds. For repairs and remount, cool sufficiently.
 - c) To dismount an image sensor, do not use a solder suction equipment. When using an electric desoldering tool, use a thermal controller of the zero cross On/Off type and connect it to ground.
- 3) Dust and dirt protection

Image sensors are packed and delivered by taking care of protecting its glass plates from harmful dust and dirt. Clean glass plates with the following operation as required, and use them.

- a) Perform all assembly operations in a clean room (class 1000 or less).
- b) Do not either touch glass plates by hand or have any object come in contact with glass surfaces. Should dirt stick to a glass surface, blow it off with an air blower. (For dirt stuck through static electricity ionized air is recommended.)
- c) Clean with a cotton bud and ethyl alcohol if the grease stained. Be careful not to scratch the glass.
- d) Keep in a case to protect from dust and dirt. To prevent dew condensation, preheat or precool when moving to a room with great temperature differences.
- e) When a protective tape is applied before shipping, just before use remove the tape applied for electrostatic protection. Do not reuse the tape.
- 4) Installing (attaching)
 - a) Remain within the following limits when applying a static load to the package. Do not apply any load more than 0.7mm inside the outer perimeter of the glass portion, and do not apply any load or impact to limited portions. (This may cause cracks in the package.)

Compressive strength

Torsional strength


1.2Nm

b) If a load is applied to the entire surface by a hard component, bending stress may be generated and the package may fracture, etc., depending on the flatness of the bottom of the package. Therefore, for installation, use either an elastic load, such as a spring plate, or an adhesive.

- c) The adhesive may cause the marking on the rear surface to disappear, especially in case the regulated voltage value is indicated on the rear surface. Therefore, the adhesive should not be applied to this area, and indicated values should be transferred to the other locations as a precaution.
- d) The notch of the package is used for directional index, and that can not be used for reference of fixing. In addition, the cover glass and seal resin may overlap with the notch of the package.
- e) If the lead bend repeatedly and the metal, etc., clash or rub against the package, the dust may be generated by the fragments of resin.
- f) Acrylate anaerobic adhesives are generally used to attach CCD image sensors. In addition, cyanoacrylate instantaneous adhesives are sometimes used jointly with acrylate anaerobic adhesives. (reference)

5) Others

- a) Do not expose to strong light (sun rays) for long periods. For continuous using under cruel condition exceeding the normal using condition, consult our company.
- b) Exposure to high temperature or humidity will affect the characteristics. Accordingly avoid storage or usage in such conditions.
- c) The brown stain may be seen on the bottom or side of the package. But this does not affect the CCD characteristics.

