

SKiiP 432GB120-2D

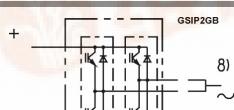
SKiiP® 2

2-pack - integrated intelligent Power System

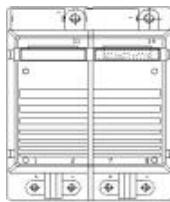
Power section

SKiiP 432GB120-2D

Features


- SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532

- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 2) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		$T_s = 25^\circ\text{C}$ unless otherwise specified		
Symbol	Conditions	Values		Units
IGBT				
V_{CES}		1200		V
V_{CC} ¹⁾	Operating DC link voltage	900		V
V_{GES}		± 20		V
I_C	$T_s = 25 (70)^\circ\text{C}$	400 (300)		A
Inverse diode				
$I_F = -I_C$	$T_s = 25 (70)^\circ\text{C}$	400 (300)		A
I_{FSM}	$T_j = 150^\circ\text{C}$, $t_p = 10\text{ ms}$; sin.	2880		A
I_{ft} (Diode)	Diode, $T_j = 150^\circ\text{C}$, 10 ms	41		kA s
T_j (T_{stg})		- 40 (- 25) ... + 150 (125)		°C
V_{isol}	AC, 1 min. (mainterminals to heat sink)	3000		V

Characteristics		$T_s = 25^\circ\text{C}$ unless otherwise specified		
Symbol	Conditions	min.	typ.	max.
IGBT				
V_{CEsat}	$I_C = 350\text{ A}$, $T_j = 25 (125)^\circ\text{C}$	2,6 (3,1)	3,1	V
V_{CEO}	$T_j = 25 (125)^\circ\text{C}$	1,2 (1,3)	1,5 (1,6)	V
r_{CE}	$T_j = 25 (125)^\circ\text{C}$	3,8 (5)	4,5 (5,8)	$\text{m}\Omega$
I_{CES}	$V_{GE} = 0\text{ V}$, $V_{CE} = V_{CES}$, $T_j = 25 (125)^\circ\text{C}$	(20)	0,8	mA
$E_{\text{on}} + E_{\text{off}}$	$I_C = 350\text{ A}$, $V_{CC} = 600\text{ V}$		105	mJ
	$T_j = 125^\circ\text{C}$, $V_{CC} = 900\text{ V}$		185	mJ
$R_{CC'} + EE'$	terminal chip, $T_j = 125^\circ\text{C}$	0,25		$\text{m}\Omega$
L_{CE}	top, bottom	7,5		nH
C_{CHC}	per phase, AC-side	2,8		nF
Inverse diode				
$V_F = V_{EC}$	$I_F = 300\text{ A}$, $T_j = 25 (125)^\circ\text{C}$	2,1 (1,9)	2,6	V
V_{TO}	$T_j = 25 (125)^\circ\text{C}$	1,3 (1)	1,4 (1,1)	V
r_T	$T_j = 25 (125)^\circ\text{C}$	2,5 (3)	3,4 (3,9)	$\text{m}\Omega$
E_{rr}	$I_C = 350\text{ A}$, $V_{CC} = 600\text{ V}$		12	mJ
	$T_j = 125^\circ\text{C}$, $V_{CC} = 900\text{ V}$		15	mJ
Mechanical data				
M_{dc}	DC terminals, SI Units	6	8	Nm
M_{ac}	AC terminals, SI Units	13	15	Nm
w	SKiiP® 2 System w/o heat sink		1,9	kg
w	heat sink		4,7	kg
Thermal characteristics (P16 heat sink; 310 m^3/h); "r" reference to temperature sensor				
$R_{\text{th(j-s)I}}$	per IGBT		0,064	K/W
$R_{\text{th(j-s)D}}$	per diode		0,188	K/W
$R_{\text{th(s-a)}}$	per module		0,043	K/W
Z_{th}	R_i (mK/W) (max. values)		$\tau_{\text{ai}}(\text{s})$	
	1 2 3 4	1 2 3 4		
$Z_{\text{th(j-r)I}}$	7 50 8 0	1 0,13 0,001	1	
$Z_{\text{th(j-r)D}}$	21 144 23 0	1 0,13 0,001	1	
$Z_{\text{th(r-a)}}$	13,9 18,9 6,6 3,6	262 50 5	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 432GB120-2D

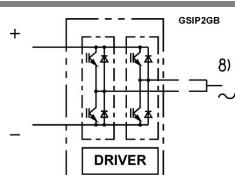
SKiiP® 2

Absolute Maximum Ratings		$T_a = 25^\circ\text{C}$ unless otherwise specified	
Symbol	Conditions	Values	Units
V_{S1}	stabilized 15 V power supply	18	V
V_{S2}	unstabilized 24 V power supply	30	V
V_{iH}	input signal voltage (high)	15 + 0,3	V
dv/dt	secondary to primary side	75	kV/μs
V_{isolIO}	input / output (AC, r.m.s., 2s)	3000	Vac
V_{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac
f_{sw}	switching frequency	20	kHz
f_{out}	output frequency for $I=I_C \text{ ;sin.}$	1	kHz
$T_{op} (T_{stg})$	operating / storage temperature	- 40 ... + 85	°C

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 432GB120-2D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characteristics $(T_a = 25^\circ\text{C})$				
Symbol	Conditions	min.	typ.	max.
V_{S1}	supply voltage stabilized	14,4	15	15,6
V_{S2}	supply voltage non stabilized	20	24	30
I_{S1}	$V_{S1} = 15 \text{ V}$	$210 + 320 * f/f_{\max} + 1,2 * (I_{AC}/A)$		
I_{S2}	$V_{S2} = 24 \text{ V}$	$160 + 220 * f/f_{\max} + 0,85 * (I_{AC}/A)$		
V_{iT+}	input threshold voltage (High)	12,3		
V_{iT-}	input threshold voltage (Low)	4,6		
R_{IN}	input resistance	10		
$t_{d(on)IO}$	input-output turn-on propagation time	1,5		
$t_{d(off)IO}$	input-output turn-off propagation time	1,4		
$t_{pERRRESET}$	error memory reset time	9		
t_{TD}	top / bottom switch : interlock time	3,3		
$I_{analogOUT}$	8 V corresponds to max. current of 15 V supply voltage (available when supplied with 24 V)	400		
$I_{Vs1outmax}$	output current at pin 12/14	50		
I_{A0max}	logic low output voltage	5		
V_{O1}	logic high output voltage	0,6		
V_{OH}		30		
I_{TRIPSC}	over current trip level ($I_{analog OUT} = 10 \text{ V}$)	500		
I_{TRIPLG}	ground fault protection	110		
T_{tp}	over temperature protection	120		
U_{DCTRIP}	trip level of U_{DC} -protection ($U_{analog OUT} = 9 \text{ V}$); (option)	900		

For electrical and thermal design support please use SEMISEL.
Access to SEMISEL is via SEMIKRON website <http://www.semikron.com>.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

Case S 2