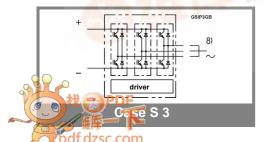
SKiiP 942GB120-3D

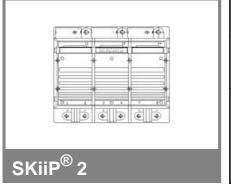
2-pack - integrated intelligent Power System

Power section


SKiiP 942GB120-3D

Features

- SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- · Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	T _s = 25 °C unless otherwise	s = 25 °C unless otherwise specified			
Symbol	Conditions	Values	Units			
IGBT						
V _{CES}	Mag	1200	V			
V _{CC} 1)	Operating DC link voltage	900	V			
V _{CES} V _{CC} 1) V _{GES}		± 20	V			
I _C	T _s = 25 (70) °C	900 (675)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	900 (675)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	6480	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	210	kA²s			
T_j , (T_{stg})	ATTACK TO THE REAL PROPERTY.	- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characte	eristics		$I_s = 25^{\circ}$	C unless	otherwise	specifie
Symbol	Conditions		min.	typ.	max.	Units
GBT						
√ _{CEsat}	$I_C = 750 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$			2,6 (3,1)	3,1	V
√ _{CEO}	$T_j = 25 (125)^{\circ} C$			1,2 (1,3)		V
CE	$T_j = 25 (125) ^{\circ}C$		198	1,8 (2,3)	2,1 (2,7)	mΩ
CES	$V_{GE} = 0 V, V_{CE} = V_{CES},$		- 4	(45)	1,2	mA
	T _j = 25 (125) °C					
e _{on} + E _{off}	I _C = 750 A, V _{CC} = 600 V		-		225	mJ
	T _i = 125 °C, V _{CC} = 900 V				397	mJ
R _{CC' + EE'}	terminal chip, T _i = 125 °C			0,17		mΩ
-CE	top, bottom			5		nH
Сснс	per phase, AC-side			4,2		nF
nverse	diode		ı			
$V_F = V_{FC}$	I _F = 750 A, T _i = 25 (125) °C			2,1 (2)	2,6	V
V _{TO}	T _i = 25 (125) °C			1,3 (1)	1,4 (1,1)	V
 T	T _i = 25 (125) °C		100	1,1 (1,3)	1,5 (1,7)	mΩ
= rr	$I_C = 750 \text{ A}, V_{CC} = 600 \text{ V}$		_ 0		29	mJ
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 900 ^{\circ}\text{V}$				37	mJ
Mechani	cal data		- "			
M _{dc}	DC terminals, SI Units		6		8	Nm
M _{ac}	AC terminals, SI Units		13		15	Nm
N	SKiiP® 2 System w/o heat sink			2,7		kg
N T	heat sink			6,6		kg
Thermal	characteristics (P16 hear	t sink; 2	95 m ³ /h);	; " ृ" refe	rence to	
	ture sensor		_	Į.		
$R_{th(j-s)I}$	per IGBT				0,03	K/W
$R_{th(j-s)D}$	per diode				0,083	K/W
$R_{th(s-a)}$	per module		- 4	3-51	0,036	K/W
Z _{th}	R _i (mK/W) (max. values)				ı _i (s)	
	1 2 3	4	1 1	2	3	4
Z th(j-r)I	3 23 4	0	1	0,13	0,001	1
Z th(j-r)D	9 64 10	0	1	0,13	0,001	1
Z th(r-a)	11,1 18,3 3,5	3,1	204	60	6	0,02

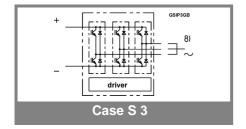
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 942GB120-3D

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	16	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver SKiiP 942GB120-3D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- · Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characte	Characteristics (7			(T _a	T _a = 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units	
V_{S1}	supply voltage stabilized	14,4	15	15,6	V	
V_{S2}	supply voltage non stabilized	20	24	30	V	
I _{S1}	V _{S1} = 15 V	260+490	260+490*f/f _{max} +1,2*(I _{AC} /A)			
I _{S2}	V _{S2} = 24 V	200+360)*f/f _{max} +0,8	5*(I _{AC} /A)	mA	
V_{iT+}	input threshold voltage (High)			12,3	V	
V_{iT-}	input threshold voltage (Low)	4,6			V	
R _{IN}	input resistance		10		kΩ	
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs	
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs	
t _{pERRRESET}	error memory reset time	9			μs	
t_{TD}	top / bottom switch : interlock time		3,3		μs	
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		900		Α	
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA	
I _{A0max}	output current at pin 12/14			5	mA	
V _{0I}	logic low output voltage			0,6	V	
V _{0H}	logic high output voltage			30	V	
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1125		Α	
I _{TRIPLG}	ground fault protection				Α	
T _{tp}	over temperature protection	110		120	°C	
U _{DCTRIP}	trip level of U _{DC} -protection	900			V	
	(U _{analog OUT} = 9 V); (option)					

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

