SIEMENS

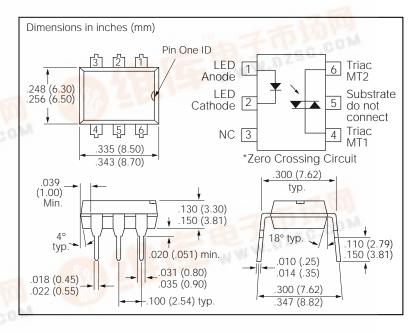
IL420 600 V TRIAC DRIVER OPTOCOUPLER

FEATURES

- High Input Sensitivity IFT=2 mA
- . Blocking Voltage, 600 V
- 300 mA On-State Current
- High Static dv/dt 10,000 V/μs
- Inverse Parallel SCRs Provide Commutating dv/dt >2K V/μs
- Very Low Leakage <10 μA
- Isolation Test Voltage from Double Molded Package 5300 VAC_{RMS}
- Small 6-Pin DIP Package
- Underwriters Lab File #E52744
- VDE 0884 Available with Option 1

Maximum Ratings

Emitter


Reverse Voltage	6 V
Forward Current	
Surge Current	2.5 A
Power Dissipation	100 mW
Derate from 25°C	
Thermal Resistance	750 °C/W

Detector

Peak Off-State Voltage	600 V
Peak Reverse Voltage	600 V
RMS On-State Current	300 mA
Single Cycle Surge	3 A
Total Power Dissipation	500 mW
Derate from 25°C	6.6 mW/°C
Thermal Resistance	150°C/W

Package

Storage Temperature	-55°C to +150°C
Operating Temperature	-55°C to +100°C
Lead Soldering Temperature	260°C/5 sec.
Isolation Test Voltage	5300 VAC _{RMS}

DESCRIPTION

The IL420 consists of a GaAs IRLED optically coupled to a photosensitive non-zero crossing TRIAC network. The TRIAC consists of two inverse parallel connected monolithic SCRs. These three semiconductors are assembled in a six pin 0.3 inch dual in-line package, using high insulation double molded, over/under leadframe construction.

High input sensitivity is achieved by using an emitter follower phototransistor and a cascaded SCR predriver resulting in an LED trigger current of less than 2 mA (DC).

The IL420 uses two discrete SCRs resulting in a commutating dV/dt of greater than 10KV/ms. The use of a proprietary *dv/dt clamp* results in a static dV/dt of greater than 10KV/ms. This clamp circuit has a MOSFET that is enhanced when high dV/dt spikes occur between MT1 and MT2 of the TRIAC. When conducting, the FET clamps the base of the phototransistor, disabling the first stage SCR predriver.

The 600 V blocking voltage permits control of off-line voltages up to 240 VAC, with a safety factor of more than two, and is sufficient for as much as 380 VAC.

The IL420 isolates low-voltage logic from 120, 240, and 380 VAC lines to control resistive, inductive, or capacitive loads including motors, solenoids, high current thyristors or TRIAC and relays.

Applications include solid-state relays, industrial controls, office equipment, and consumer appliances.

Characteristics

	Symbol	Min	Тур	Max	Unit	Condition
Emitter						
Forward Voltage	V _F		1.16	1.35	V	I _F =10 mA
Reverse Current	I _R		0.1	10	μА	V _R =6 V
Capacitance	Co		40		pF	V _F =0 V, f=1 MHz
Thermal Resistance, Junction to Lead	R _{THJL}		750		°C/W	
Output Detector						
Off-State Voltage	V _{D (RMS)}	424	460		V	I _{D(RMS)} =70 μA
Reverse Voltage	V _R	424	460		V	I _{R(RMS)} =70 μA
Off-State Current	I _{D (RMS)}		10	100	μА	V _D =600 V, T _A =100°C
Reverse Current	I _{R (RMS)}		10	100	μА	V _R =600 V, T _A =100°C
On-State Voltage	V _{TM}		1.7	3	V	I _T =300 mA
On-State Current	I _{TM}			300	mA	PF=1.0, V _{T(RMS)} =1.7 V
Surge (Non-Repititive) On-State Current	I _{TSM}			3	А	f=50 Hz
Holding Current	I _H		65	500	μА	
Latching Current	IL		5		mA	V _T =2.2 V
LED Trigger Current	I _{FT}		1	2	mA	V _{AK} =5 V
Turn-On Time	t _{ON}		35		μs	V _{RM} =V _{DM} =424 VAC
Turn-Off Time	t _{OFF}		50		μs	PF=1.0, I _T =300 mA
Critical State of Rise of Off-State Voltage	dv/dt _{cr}	10000 5000			V/μs V/μs	V _D =0.67 V _{DRM} T _i =25°C TJ=80°C
Critical Rate of Rise of Voltage at Current Commutation	dv/dt _{crq} dv/dt _{crq}	10000 5000			V/µs V/µs	V _D =0.67 V _{DRM} , di/dt _{crq} ≤15 A/ms Tj=25°C T _j =80°C
Critical State of Rise of On-State Current	di/dt _{cr}			8	A/µs	
Thermal Resistance, Junction to Lead	R _{THJL}		150		°C/W	
Insulation and Isolation						
Critical Rate of Rise of Coupled Input/Output Voltage	dv _(IO) /dt		5000		V/µs	I _T =0 A, V _{RM} =V _{DM} =424 VAC
Common Mode Coupling Capacitor	C _{CM}		0.01		pF	
Package Capacitance	C _{IO}		0.8		pF	f=1 MHz, V _{IO} =0 V
Isolation Test Voltage, Input-Output	V _{ISO}	5300			VAC _{RMS}	Relative Humidity ≤50%
Creepage		≥7			mm	
Clearance		≥7			mm	
Creepage Tracking Resistance per DIN IEC 112/VDE 0303, Part 1 group IIIa per DIN VDE 0110		СТІ		175		
Isolation Resistance	R _{is} R _{is}		≥10 ¹² ≥10 ¹¹		ΩΩ	V _{IO} =500, T _A =25°C V _{IO} =500, T _A =100°C
Trigger Current Temperature Gradient	$\Delta I_{FT}/\Delta T_{j}$		7	14	μΑ/Κ	
Capacitance Between Input and Output Circuit	C _{IO}			2	pF	V _R =0, f=1 kHz

IL420

Figure 1. Forward voltage versus forward current

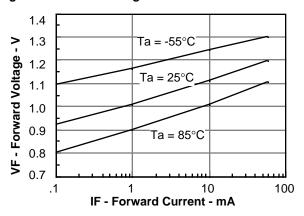


Figure 2. Peak LED current versus duty factor, Tau

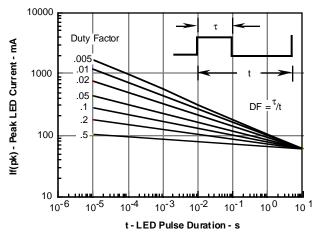


Figure 3. Maximum LED power dissipation

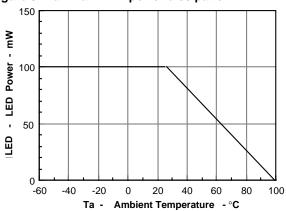


Figure 4. Typical output characteristics

 $I_T=f(V_t)$, parameter: T_i SICO0002 I_T I_T

Figure 5. Current reduction

 I_{TRMS} =f(T_A) R_{thJA}=125 K/W Device switch is soldered in PCB or base plate

- *V*_T

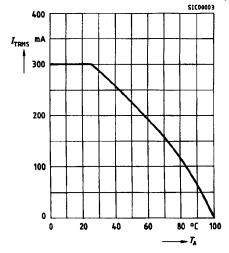


Figure 6. Current reduction

I_{TRMS}=f(T_{PIN5}), R_{thJ}=16.5 K/W Thermocouple measurement must be performed potentially separated to A1 and A2. Measuring junction to be as near as possible at case.

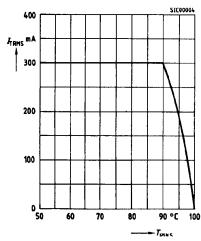


Figure 7. Typical trigger delay time $tgd=f(I_F/I_{FT25^{\circ}C})$, $V_D=200$ V, parameter: T_i

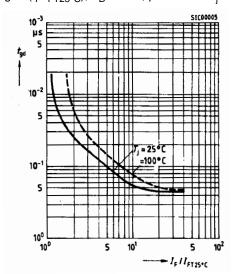


Figure 8. Typical off-state current $I_D=f(T_j)$, $V_D=800$ V, parameter: T_j

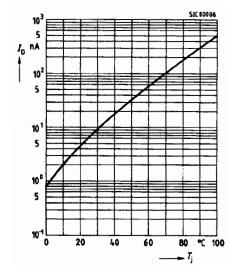


Figure 9. Power dissipation

for 40 to 60 Hz line operation, P_{TOT} = $f(I_{TRMS})$

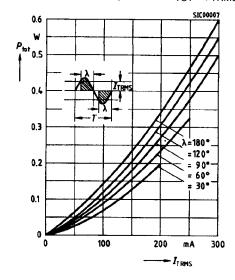
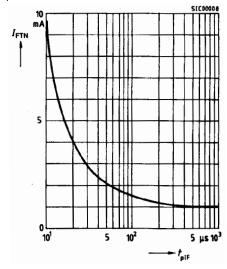



Figure 10. Pulse trigger current

 I_{FTN} =f(t_{pIF}) I_{FTN} normalized to I_{FT} , referring to t_{pIF} \geq 1ms, V_{OP} =200 V, f=40 to 60 Hz typ.

