Low Noise, Cascadable Silicon Bipolar MMIC Amplifier

Technical Data

INA-03100

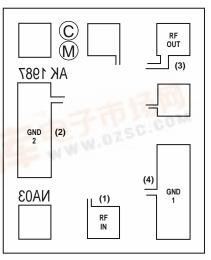
专业PCB打样工

24小时加急出货

HEWLETT PACKARD

Features

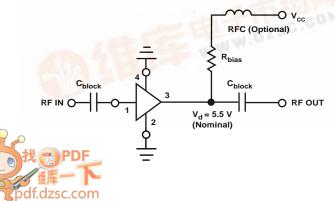
- Cascadable 50 Ω Gain Block
- Low Noise Figure: 2.5 dB Typical at 1.5 GHz
- High Gain: 26.0 dB Typical at 2.8 GHz
- **3 dB Bandwidth:** DC to 2.8 GHz
- Unconditionally Stable (k>1)
- Low Power Consumption


Description

The INA-03100 is a low-noise silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) feedback amplifier chip. It is designed for narrow or wide bandwidth commercial, industrial and military applications that require high gain and low noise IF or RF amplification with minimum power consumption.

The INA series of MMICs is fabricated using HP's 10 GHz fT, 25 GHz f_{MAX}, ISOSATTM-I silicon bipolar process which uses nitride self-alignment, submicrometer lithography, trench isolation, ion implantation, gold metallization and polyimide intermetal dielectric and scratch protection to achieve excellent performance, uniformity and reliability.

The recommended assembly procedure is gold-eutectic die attach at 400°C and either wedge or ball bonding using 0.7 mil gold wire.^[1]


Chip Outline^[1]

Note:

1. See Application Note, "A005: Transistor Chip Use" for additional information.

Typical Biasing Configuration

INA-03100	Absolute	Maximum	Ratings
------------------	----------	---------	----------------

Parameter	Absolute Maximum ^[1]
Device Current	50 mA
Power Dissipation ^[2,3]	200 mW
RF Input Power	+13dBm
Junction Temperature	200°C
Storage Temperature	−65 to 200°C

Thermal Resistance^[2]: $\theta_{jc} = 70^{\circ}C/W$

Notes:

1. Permanent damage may occur if any of these limits are exceeded.

2. $T_{Mounting Surface} (T_{MS}) = 25$ °C.

3. Derate at 14.3 mW/°C for $T_{MS} > 186$ °C.

Symbol	Parameters and Test Conditions ^[2] :	Units	Min.	Typ.	Max.	
GP	Power Gain $(S_{21} ^2)$	$f = 1.5 \mathrm{GHz}$	dB		26.0	
ΔG_P	Gain Flatness	f = 0.01 to 2.0 GHz	dB		± 0.5	
f _{3 dB}	3 dB Bandwidth		GHz		2.8	
ISO	Reverse Isolation ($ S_{12} ^2$)	f = 0.01 to 2.0 GHz	dB		37	
VSWR	Input VSWR	f = 0.01 to 2.0 GHz			2.0^{5}	
	Output VSWR	f = 0.01 to 2.0 GHz			3.0^{5}	
NF	50Ω Noise Figure	f = 1.5 GHz	dB		2.5	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.5 GHz	dBm		1.0	
IP ₃	Third Order Intercept Point	f = 1.5 GHz	dBm		10	
tD	Group Delay	f = 1.5 GHz	psec		200	
Vd	Device Voltage	f = 1.5 GHz	V	3.5	4.5	5.5
dV/dT	Device Voltage Temperature Coefficient		mV/°C		+5	

INA-03100 Electrical Specifications^[1,3], $T_A = 25^{\circ}C$

Notes:

1. The recommended operating current range for this device is 8 to 20 mA. Typical performance as a function of current is on the following page.

2. RF performance of the chip is determined by packaging and testing 10 devices per wafer.

3. The values are the achievable performance for the INA-03100 mounted in a 70 mil stripline package.

INA-03100 Typical Scattering Parameters^[1] ($Z_0 = 50 \Omega$, $T_A = 25^{\circ}$ C, $I_d = 12 m$ A)

			-			• 0		A	' u		
Freq.	S ₁₁		S ₂₁		\mathbf{S}_{12}		S ₂₂				
GHz	Mag	Ang	dB	Mag	Ang	dB	Mag	Ang	Mag	Ang	k
0.05	0.35	176	26.6	21.4	-4	-36.0	.016	8	.56	-1	1.25
0.10	0.35	172	26.6	21.3	-8	-36.5	.015	-4	.56	-3	1.30
0.20	0.33	165	26.4	21.0	-15	-36.4	.015	-5	.56	-4	1.30
0.40	0.31	150	26.1	20.1	-29	-36.0	.016	-13	.54	-7	1.33
0.60	0.27	137	25.6	19.0	-42	-37.6	.013	-14	.54	-8	1.58
0.80	0.23	125	25.0	17.8	-53	-36.1	.016	-13	.53	-9	1.49
1.00	0.19	113	24.5	16.7	-63	-35.1	.018	-16	.53	-10	1.43
1.20	0.16	99	24.0	15.9	-72	-36.9	.014	-21	.54	-12	1.72
1.40	0.13	76	23.8	15.4	-81	-36.4	.015	-12	.55	-15	1.65
1.60	0.12	51	23.6	15.2	-88	-35.6	.017	-11	.56	-17	1.54
1.80	0.13	21	23.6	15.5	-97	-34.1	.020	-5	.58	-20	1.24
2.00	0.18	-5	23.8	15.5	-106	-34.3	.019	-13	.60	-25	1.18
2.50	0.40	-52	24.7	17.2	-132	-30.2	.031	-9	.67	-38	0.53
3.00	0.81	-86	25.6	19.1	-167	-27.0	.045	-12	.70	-64	0.03

Note:

1. S-parameters are de-embedded from 70 mil package measured data using the package model found in the DEVICE

INA-03100 Typical Performance, $T_A = 25^{\circ}C$ (unless otherwise noted: The values are the achievable performance for the INA-03100 mounted in a 70 mil stripline package.)

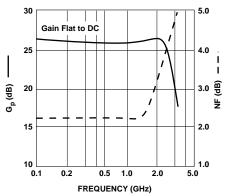


Figure 1. Typical Gain and Noise Figure vs. Frequency, $T_A = 25^{\circ}C$, $I_d = 12$ mA.

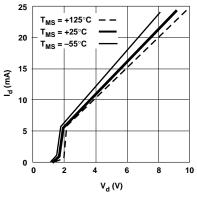


Figure 2. Device Current vs. Voltage.

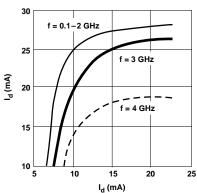


Figure 3. Power Gain vs. Current.

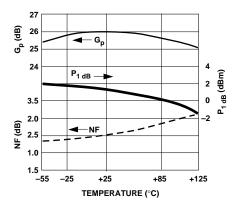


Figure 4. Output Power and 1 dB Gain Compression, NF and Power Gain vs. CaseTemperature, f = 1.5 GHz, I_d = 12 mA.

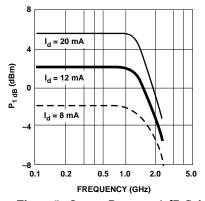


Figure 5. Output Power at 1 dB Gain **Compression vs. Frequency.**

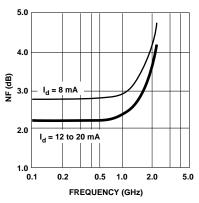
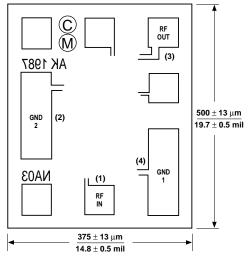



Figure 6. Noise Figure vs. Frequency.

INA-03100 Chip Dimensions

Chip thickness is 140 $\mu\text{m}/\text{5.5}$ mil. Bond Pads are 41 μ m/1.6 mil typical on each side. Note: Ground