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Intel387TM DX
MATH COPROCESSOR

Y High Performance 80-Bit Internal
Architecture

Y Implements ANSI/IEEE Standard 754-
1985 for Binary Floating-Point
Arithmetic

Y Expands Intel386TM DX CPU Data
Types to Include 32-, 64-, 80-Bit
Floating Point, 32-, 64-Bit Integers and
18-Digit BCD Operands

Y Directly Extends Intel386TM DX CPU
Instruction Set to Include
Trigonometric, Logarithmic,
Exponential and Arithmetic Instructions
for All Data Types

Y Upward Object-Code Compatible from
8087 and 80287

Y Full-Range Transcendental Operations
for SINE, COSINE, TANGENT,
ARCTANGENT and LOGARITHM

Y Built-In Exception Handling

Y Operates Independently of Real,
Protected and Virtual-8086 Modes of
the Intel386TM DX Microprocessor

Y Eight 80-Bit Numeric Registers, Usable
as Individually Addressable General
Registers or as a Register Stack

Y Available in 68-Pin PGA Package

Y One Version Supports 16 MHz–33 MHz
Speeds
(See Packaging Spec: Order Ý231369)

The Intel387TM DX Math CoProcessor (MCP) is an extension of the Intel386TM microprocessor architecture.
The combination of the Intel387 DX MCP with the Intel386TM DX Microprocessor dramatically increases the
processing speed of computer application software which utilize mathematical operations. This makes an ideal
computer workstation platform for applications such as financial modeling and spreadsheets, CAD/CAM, or
graphics.

The Intel387 DX Math CoProcessor adds over seventy mnemonics to the Intel386 DX Microprocessor instruc-
tion set. Specific Intel387 DX MCP math operations include logarithmic, arithmetic, exponential, and trigono-
metric functions. The Intel387 DX MCP supports integer, extended integer, floating point and BCD data
formats, and fully conforms to the ANSI/IEEE floating point standard.

The Intel387 DX Math CoProcessor is object code compatible with the Intel387 SX MCP, and upward object
code compatible from the 80287 and 8087 math coprocessors. Object code for Intel386 DX/Intel387 DX is
also compatible with the Intel486TM microprocessor. The Intel387 DX MCP is manufactured on 1 micron,
CHMOS IV technology and packaged in a 68-pin PGA package.
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Figure 0.1. Intel387TM DX Math CoProcessor Block Diagram
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Figure 1.1. Intel386TM DX Microprocessor and Intel387TM DX Math Coprocessor Register Set

1.0 FUNCTIONAL DESCRIPTION

The Intel387TM DX Math Coprocessor provides
arithmetic instructions for a variety of numeric data
types in Intel386TM DX Microprocessor systems. It
also executes numerous built-in transcendental
functions (e.g. tangent, sine, cosine, and log func-
tions). The Intel387 DX MCP effectively extends the
register and instruction set of a Intel386 DX Micro-
processor system for existing data types and adds
several new data types as well. Figure 1.1 shows the
model of registers visible to programs. Essentially,
the Intel387 DX MCP can be treated as an additional
resource or an extension to the Intel386 DX Micro-
processor. The Intel386 DX Microprocessor togeth-
er with a Intel387 DX MCP can be used as a single
unified system.

The Intel387 DX MCP works the same whether the
Intel386 DX Microprocessor is executing in real-ad-
dress mode, protected mode, or virtual-8086 mode.
All memory access is handled by the Intel386 DX
Microprocessor; the Intel387 DX MCP merely oper-
ates on instructions and values passed to it by the
Intel386 DX Microprocessor. Therefore, the Intel387
DX MCP is not sensitive to the processing mode of
the Intel386 DX Microprocessor.

In real-address mode and virtual-8086 mode, the In-
tel386 DX Microprocessor and Intel387 DX MCP are
completely upward compatible with software for
8086/8087, 80286/80287 real-address mode, and
Intel386 DX Microprocessor and 80287 Coproces-
sor real-address mode systems.

In protected mode, the Intel386 DX Microprocessor
and Intel387 DX MCP are completely upward com-
patible with software for 80286/80287 protected
mode, and Intel386 DX Microprocessor and 80287
Coprocessor protected mode systems.

The only differences of operation that may appear
when 8086/8087 programs are ported to a protect-
ed-mode Intel386 DX Microprocessor and Intel387
DX MCP system (not using virtual-8086 mode), is in
the format of operands for the administrative instruc-
tions FLDENV, FSTENV, FRSTOR and FSAVE.
These instructions are normally used only by excep-
tion handlers and operating systems, not by applica-
tions programs.

The Intel387 DX MCP contains three functional units
that can operate in parallel to increase system per-
formance. The Intel386 DX Microprocessor can be
transferring commands and data to the MCP bus
control logic for the next instruction while the MCP
floating-point unit is performing the current numeric
instruction.
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2.0 PROGRAMMING INTERFACE

The MCP adds to the Intel386 DX Microprocessor
system additional data types, registers, instructions,
and interrupts specifically designed to facilitate high-
speed numerics processing. To use the MCP re-
quires no special programming tools, because all
new instructions and data types are directly support-
ed by the Intel386 DX CPU assembler and compilers
for high-level languages. All 8086/8088 develop-
ment tools that support the 8087 can also be used
to develop software for the Intel386 DX Microproc-
essor and Intel387 DX Math Coprocessor in real-ad-
dress mode or virtual-8086 mode. All 80286 devel-
opment tools that support the 80287 can also be
used to develop software for the Intel386 DX Micro-
processor and Intel387 DX Math Coprocessor.

All communication between the Intel386 DX Micro-
processor and the MCP is transparent to applica-
tions software. The CPU automatically controls the
MCP whenever a numerics instruction is executed.
All physical memory and virtual memory of the CPU
are available for storage of the instructions and op-
erands of programs that use the MCP. All memory
addressing modes, including use of displacement,
base register, index register, and scaling, are avail-
able for addressing numerics operands.

Section 6 at the end of this data sheet lists by class
the instructions that the MCP adds to the instruction
set of the Intel386 DX Microprocessor system.

2.1 Data Types

Table 2.1 lists the seven data types that the Intel387
DX MCP supports and presents the format for each
type. Operands are stored in memory with the least
significant digit at the lowest memory address. Pro-
grams retrieve these values by generating the low-
est address. For maximum system performance, all
operands should start at physical-memory address-
es evenly divisible by four (doubleword boundaries);
operands may begin at any other addresses, but will
require extra memory cycles to access the entire op-
erand.

Internally, the Intel387 DX MCP holds all numbers in
the extended-precision real format. Instructions that
load operands from memory automatically convert
operands represented in memory as 16-, 32-, or 64-
bit integers, 32- or 64-bit floating-point numbers, or
18-digit packed BCD numbers into extended-preci-
sion real format. Instructions that store operands in
memory perform the inverse type conversion.

2.2 Numeric Operands

A typical MCP instruction accepts one or two oper-
ands and produces a single result. In two-operand
instructions, one operand is the contents of an MCP
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example FSQRT always takes the square root of
the number in the top stack element.
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Table 2.1. Intel387TM DX MCP Data Type Representation in Memory

240448–2

NOTES:
(1) S e Sign bit (0 e positive, 1 e negative)
(2) dn e Decimal digit (two per byte)
(3) X e Bits have no significance; Intel387TM DX MCP ignores when loading, zeros when storing
(4)U e Position of implicit binary point
(5) I e Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):

Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)

(7) Packed BCD: (b1)S (D17...D0)
(8) Real: (b1)S (2E-BIAS) (F0 F1...)
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15 0

TAG (7) TAG (6) TAG (5) TAG (4) TAG (3) TAG (2) TAG (1) TAG (0)

NOTE:
The index i of tag(i) is not top-relative. A program typically uses the ‘‘top’’ field of Status Word to determine which tag(i)
field refers to logical top of stack.
TAG VALUES:

00 e Valid
01 e Zero
10 e QNaN, SNaN, Infinity, Denormal and Unsupported Formats
11 e Empty

Figure 2.1. Intel387TM DX MCP Tag Word

2.3 Register Set

Figure 1.1 shows the Intel387 DX MCP register set.
When an MCP is present in a system, programmers
may use these registers in addition to the registers
normally available on the Intel386 DX CPU.

2.3.1 DATA REGISTERS

Intel387 DX MCP computations use the MCP’s data
registers. These eight 80-bit registers provide the
equivalent capacity of twenty 32-bit registers. Each
of the eight data registers in the MCP is 80 bits wide
and is divided into ‘‘fields’’ corresponding to the
MCPs extended-precision real data type.

The Intel387 DX MCP register set can be accessed
either as a stack, with instructions operating on the
top one or two stack elements, or as a fixed register
set, with instructions operating on explicitly designat-
ed registers. The TOP field in the status word identi-
fies the current top-of-stack register. A ‘‘push’’ oper-
ation decrements TOP by one and loads a value into
the new top register. A ‘‘pop’’ operation stores the
value from the current top register and then incre-

ments TOP by one. Like the Intel386 DX Microproc-
essor stacks in memory, the MCP register stack
grows ‘‘down’’ toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to user. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2.1 shows. Each two-bit tag
represents one of the eight numerics registers. The
principal function of the tag word is to optimize the
MCPs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

8
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240448–3

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.2 for interpretation of condition code.
TOP values:

000 e Register 0 is Top of Stack
001 e Register 1 is Top of Stack

#
#
#

111 e Register 7 is Top of Stack
For definitions of exceptions, refer to the section entitled
‘‘Exception Handling’’

Figure 2.2. MCP Status Word

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2.2 reflects the overall state of the MCP. It
may be read and inspected by CPU code.

Bit 15, the B-bit (busy bit) is included for 8087 com-
patibility only. It reflects the contents of the ES bit
(bit 7 of the status word), not the status of the
BUSYÝ output of the Intel387 DX MCP.

Bits 13–11 (TOP) point to the Intel387 DX MCP reg-
ister that is the current top-of-stack.

The four numeric condition code bits (C3–C0) are
similar to the flags in a CPU; instructions that per-
form arithmetic operations update these bits to re-
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2.2
through 2.5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERRORÝ signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C1) distinguishes between stack
overflow (C1 e 1) and underflow (C1 e 0).

Figure 2.2 shows the six exception flags in bits 5–0
of the status word. Bits 5–0 are set to indicate that
the MCP has detected an exception while executing
an instruction. A later section entitled ‘‘Exception
Handling’’ explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5–0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERRORÝ output of the
MCP is activated immediately.

9
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Table 2.2. Condition Code Interpretation

Instruction C0 (S) C3 (Z) C1 (A) C2 (C)

FPREM, FPREM1 Three least significant bits
Reduction

(see Table 2.3) of quotient
0 e complete

Q2 Q0 Q1
1 e incomplete

or O/UÝ

FCOM, FCOMP,

FCOMPP, FTST, Result of comparison
Zero

Operand is not

FUCOM, FUCOMP, (see Table 2.4)
or O/UÝ

comparable

FUCOMPP, FICOM, (Table 2.4)

FICOMP

FXAM Operand class Sign Operand class

(see Table 2.5) or O/UÝ (Table 2.5)

FCHS, FABS, FXCH,

FINCSTP, FDECSTP,
Zero

Constant loads, UNDEFINED UNDEFINED

FXTRACT, FLD,
or O/UÝ

FILD, FBLD,

FSTP (ext real)

FIST, FBSTP,

FRNDINT, FST,

FSTP, FADD, FMUL,
Roundup

FDIV, FDIVR, UNDEFINED UNDEFINED

FSUB, FSUBR,
or O/UÝ

FSCALE, FSQRT,

FPATAN, F2XM1,

FYL2X, FYL2XP1

FPTAN, FSIN Roundup Reduction

FCOS, FSINCOS UNDEFINED or O/UÝ, 0 e complete

undefined 1 e incomplete

if C2 e 1

FLDENV, FRSTOR Each bit loaded from memory

FLDCW, FSTENV,

FSTCW, FSTSW, UNDEFINED

FCLEX, FINIT,

FSAVE

O/UÝ When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1 e 1) and underflow (C1 e 0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.
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Table 2.3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code
Interpretation after FPREM and FPREM1

C2 C3 C1 C0

Incomplete Reduction:

1 X X X further interation required

for complete reduction

Q1 Q0 Q2 Q MOD8

0 0 0 0

0 1 0 1
Complete Reduction:

0
1 0 0 2

C0, C3, C1 contain three least
1 1 0 3

significant bits of quotient
0 0 1 4

0 1 1 5

1 0 1 6

1 1 1 7

Table 2.4. Condition Code Resulting from Comparison

Order C3 C2 C0

TOP l Operand 0 0 0

TOP k Operand 0 0 1

TOP e Operand 1 0 0

Unordered 1 1 1

Table 2.5. Condition Code Defining Operand Class

C3 C2 C1 C0 Value at TOP

0 0 0 0 a Unsupported

0 0 0 1 a NaN

0 0 1 0 b Unsupported

0 0 1 1 b NaN

0 1 0 0 a Normal

0 1 0 1 a Infinity

0 1 1 0 b Normal

0 1 1 1 b Infinity

1 0 0 0 a 0

1 0 0 1 a Empty

1 0 1 0 b 0

1 0 1 1 b Empty

1 1 0 0 a Denormal

1 1 1 0 b Denormal
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2.3.4 INSTRUCTION AND DATA POINTERS

Because the MCP operates in parallel with the CPU,
any errors detected by the MCP may be reported
after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the Intel386 DX Microprocessor
and Intel387 DX Math CoProcessor contains two
pointer registers that supply the address of the fail-
ing numeric instruction and the address of its numer-
ic memory operand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
tually located in the Intel386 DX CPU, but appear to
be located in the MCP because they are accessed
by the ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR. (In the 8086/8087 and 80286/80287,
these registers are located in the MCP.) Whenever

the Intel386 DX CPU decodes a new ESC instruc-
tion, it saves the address of the instruction (including
any prefixes that may be present), the address of
the operand (if present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel386 DX Microprocessor (protected mode or
real-address mode) and depending on the operand-
size attribute in effect (32-bit operand or 16-bit oper-
and). When the Intel386 DX Microprocessor is in vir-
tual-8086 mode, the real-address mode formats are
used. (See Figures 2.3 through 2.6.) The ESC in-
structions FLDENV, FSTENV, FSAVE, and FRSTOR
are used to transfer these values between the In-
tel386 DX Microprocessor registers and memory.
Note that the value of the data pointer is undefined if
the prior ESC instruction did not have a memory op-
erand.

32-BIT PROTECTED MODE FORMAT

31 23 15 7 0

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

IP OFFSET C

00000 OPCODE 10..0 CS SELECTOR 10

DATA OPERAND OFFSET 14

RESERVED OPERAND SELECTOR 18

Figure 2.3. Protected Mode Intel387TM DX MCP Instruction and

Data Pointer Image in Memory, 32-Bit Format
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32-BIT REAL-ADDRESS MODE FORMAT

31 23 15 7 0

RESERVED CONTROL WORD 0

RESERVED STATUS WORD 4

RESERVED TAG WORD 8

RESERVED INSTRUCTION POINTER 15..0 C

0 0 0 0 INSTRUCTION POINTER 31..16 0 OPCODE 10..0 10

RESERVED OPERAND POINTER 15..0 14

0 0 0 0 OPERAND POINTER 31..16 0 0 0 0 0 0 0 0 0 0 0 0 18

Figure 2.4. Real Mode Intel387TM DX MCP Instruction and Data Pointer Image in Memory, 32-Bit Format

16-BIT PROTECTED MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

IP OFFSET 6

CS SELECTOR 8

OPERAND OFFSET A

OPERAND SELECTOR C

Figure 2.5. Protected Mode Intel387TM DX MCP

Instruction and Data Pointer

Image in Memory, 16-Bit Format

16-BIT REAL-ADDRESS MODE AND

VIRTUAL-8086 MODE FORMAT

15 7 0

CONTROL WORD 0

STATUS WORD 2

TAG WORD 4

INSTRUCTION POINTER 15..0 6

IP19.16 0 OPCODE 10..0 8

OPERAND POINTER 15..0 A

DP 19.16 0 0 0 0 0 0 0 0 0 0 0 0 C

Figure 2.6. Real Mode Intel387TM DX MCP

Instruction and Data Pointer

Image in Memory, 16-Bit Format
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240448–4
Precision Control Rounding Control

00Ð24 bits (single precision) 00ÐRound to nearest or even
01Ð(reserved) 01ÐRound down (toward b%)
10Ð53 bits (double precision) 10ÐRound up (toward a%)
11Ð64 bits (extended precision) 11ÐChop (truncate toward zero)

Figure 2.7. Intel387TM DX MCP Control Word

2.3.5 CONTROL WORD

The MCP provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2.7 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
the MCP error and exception masking. Bits 5–0 of
the control word contain individual masks for each of
the six exceptions that the MCP recognizes.

The high-order byte of the control word configures
the MCP operating mode, including precision and
rounding.

# Bit 12 no longer defines infinity control and is a
reserved bit. Only affine closure is supported for
infinity arithmetic. The bit is initialized to zero after
RESET or FINIT and is changeable upon loading
the CW. Programs must ignore this bit.

# The rounding control (RC) bits (bits 11–10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control

affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

# The precision control (PC) bits (bits 9–8) can be
used to set the MCP internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith-
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci-
sion is determined by the opcode or extended
precision is used.

2.4 Interrupt Description

Several interrupts of the Intel386 DX CPU are used
to report exceptional conditions while executing nu-
meric programs in either real or protected mode. Ta-
ble 2.6 shows these interrupts and their causes.
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Table 2.6. Intel386TM DX Microprocessor Interrupt Vectors Reserved for MCP

Interrupt
Cause of Interrupt

Number

7 An ESC instruction was encountered when EM or TS of the Intel386TM DX CPU control
register zero (CR0) was set. EM e 1 indicates that software emulation of the instruction is
required. When TS is set, either an ESC or WAIT instruction causes interrupt 7. This
indicates that the current MCP context may not belong to the current task.

9 An operand of a coprocessor instruction wrapped around an addressing limit (0FFFFH for
small segments, 0FFFFFFFFH for big segments, zero for expand-down segments) and
spanned inaccessible addresses(1). The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does
not return reliable addresses. As with the 80286/80287, the segment overrun exception
should be handled by executing an FNINIT instruction (i.e. an FINIT without a preceding
WAIT). The return address on the stack does not necessarily point to the failing instruction
nor to the following instruction. The interrupt can be avoided by never allowing numeric
data to start within 108 bytes of the end of a segment.

13 The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The Intel387TM DX MCP
has not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The
Intel386TM DX CPU return address pushed onto the stack of the exception handler points
to a WAIT or ESC instruction (including prefixes). This instruction can be restarted after
clearing the exception condition in the MCP. FNINIT, FNCLEX, FNSTSW, FNSTENV, and
FNSAVE cannot cause this interrupt.

1. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is near the largest valid
address in the segment. Because of the wrap-around, the beginning and ending addresses of such an operand will be at opposite ends of the
segment. There are two ways that such an operand may also span inaccessible addresses: 1) if the segment limit is not equal to the addressing
limit (e.g. addressing limit is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte
operand that starts at valid offset FFFC will span addresses FFFC–FFFF and 0000-0003; however addresses FFFE and FFFF are not valid,
because they exceed the limit); 2) if the operand begins and ends in present and accessible pages but intermediate bytes of the operand fall in a
not-present page or a page to which the procedure does not have access rights.

2.5 Exception Handling

The Intel387 DX MCP detects six different exception
conditions that can occur during instruction execu-
tion. Table 2.7 lists the exception conditions in order
of precedence, showing for each the cause and the
default action taken by the MCP if the exception is
masked by its corresponding mask bit in the control
word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERRORÝ signal. When the CPU at-
tempts to execute another ESC instruction or WAIT,
exception 7 occurs. The exception condition must
be resolved via an interrupt service routine. The In-
tel386 DX Microprocessor saves the address of the
floating-point instruction that caused the excep-

tion and the address of any memory operand re-
quired by that instruction.

2.6 Initialization

Intel387 DX MCP initialization software must exe-
cute an FNINIT instruction (i.e. an FINIT without a
preceding WAIT) to clear ERRORÝ. After a hardware
RESET, the ERRORÝ output is asserted to indicate
that a Intel387 DX MCP is present. To accomplish
this, the IE and ES bits of the status word are set,
and the IM bit in the control word is reset. After
FNINIT, the status word and the control word have
the same values as in an 80287 after RESET.
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2.7 8087 and 80287 Compatibility

This section summarizes the differences between
the Intel387 DX MCP and the 80287. Any migration
from the 8087 directly to the Intel387 DX MCP must
also take into account the differences between the
8087 and the 80287 as listed in Appendix A.

Many changes have been designed into the Intel387
DX MCP to directly support the IEEE standard in
hardware. These changes result in increased per-
formance by eliminating the need for software that
supports the standard.

2.7.1 GENERAL DIFFERENCES

The Intel387 DX MCP supports only affine closure
for infinity arithmetic, not projective closure. Bit 12 of
the Control Word (CW) no longer defines infinity
control. It is a reserved bit; but it is initialized to zero
after RESET or FINIT and is changeable upon load-
ing the CW. Programs must ignore this bit.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for g%); F2XM1 and
FPTAN accept a wider range of operands.

The results of transcendental operations may be
slightly different from those computed by 80287.

In the case of FPTAN, the Intel387 DX MCP supplies
a true tangent result in ST(1), and (always) a floating
point 1 in ST.

Rounding control is in effect for FLD constant .

Software cannot change entries of the tag word to
values (other than empty) that do not reflect the ac-
tual register contents.

After reset, FINIT, and incomplete FPREM, the In-
tel387 DX MCP resets to zero the condition code
bits C3–C0 of the status word.

In conformance with the IEEE standard, the Intel387
DX MCP does not support the special data formats:
pseudozero, pseudo-NaN, pseudoinfinity, and un-
normal.

Table 2.7. Exceptions

Exception Cause
Default Action

(if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer

Operation indeterminate form (0*%, 0/0, (a%) a (b%), etc.), or indefinite, or BCD indefinite

stack overflow/underflow (SF is also set).

Denormalized At least one of the operands is denormalized, i.e. it has Normal processing

Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is %

nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value

format. or %

Underflow The true result is nonzero but too small to be Result is denormalized or

represented in the specified format, and, if underflow zero

exception is masked, denormalization causes loss of

accuracy.

Inexact The true result is not exactly representable in the Normal processing

Result specified format (e.g. 1/3); the result is rounded continues

(Precision) according to the rounding mode.
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2.7.2 EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the Intel387 DX MCP:

1. When the overflow or underflow exception is
masked, the Intel387 DX MCP differs from the
80287 in rounding when overflow or underflow
occurs. The Intel387 DX MCP produces results
that are consistent with the rounding mode.

2. When the underflow exception is masked, the
Intel387 DX MCP sets its underflow flag only if
there is also a loss of accuracy during denormali-
zation.

3. Fewer invalid-operation exceptions due to de-
normal operands, because the instructions
FSQRT, FDIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be-
fore proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de-
normal operands.

5. The denormal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece-
dence over all other exceptions.

7. When the denormal exception is masked, the In-
tel387 DX MCP automatically normalizes denor-
mal operands. The 8087/80287 performs unnor-
mal arithmetic, which might produce an unnor-
mal result.

8. When the operand is zero, the FXTRACT in-
struction reports a zero-divide exception and
leaves b% in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

10. FLDextended precision no longer reports denor-
mal exceptions, because the instruction is not
numeric.

11. FLD single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized operand
exception. When loading a signaling NaN, FLD
single/double precision signals an invalid-oper-
and exception.

12. The Intel387 DX MCP only generates quiet
NaNs (as on the 80287); however, the Intel387
DX MCP distinguishes between quiet NaNs and
signaling NaNs. Signaling NaNs trigger excep-
tions when they are used as operands; quiet
NaNs do not (except for FCOM, FIST, and
FBSTP which also raise IE for quiet NaNs).

13. When stack overflow occurs during FPTAN and
overflow is masked, both ST(0) and ST(1) con-
tain quiet NaNs. The 80287/8087 leaves the
original operand in ST(1) intact.

14. When the scaling factor is g%, the FSCALE
(ST(0), ST(1)) instruction behaves as follows
(ST(0) and ST(1) contain the scaled and scaling
operands respectively):

# FSCALE(0,%) generates the invalid operation
exception.

# FSCALE(finite, b%) generates zero with the
same sign as the scaled operand.

# FSCALE(finite, a%) generates % with the
same sign as the scaled operand.

The 8087/80287 returns zero in the first case
and raises the invalid-operation exception in the
other cases.

15. The Intel387 DX MCP returns signed infinity/
zero as the unmasked response to massive
overflow/underflow. The 8087 and 80287 sup-
port a limited range for the scaling factor; within
this range either massive overflow/underflow do
not occur or undefined results are produced.

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the Ý symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no Ý is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

In the following signal descriptions, the Intel387 DX
Math Coprocessor pins are grouped by function as
follows:

1. Execution controlÐCPUCLK2, NUMCLK2, CKM,
RESETIN

2. MCP handshakeÐPEREQ, BUSYÝ, ERRORÝ

3. Bus interface pinsÐD31–D0, W/RÝ, ADSÝ,
READYÝ, READYOÝ

4. Chip/Port SelectÐSTEN, NPS1Ý, NPS2,
CMD0Ý

5. Power suppliesÐVCC, VSS

Table 3.1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char-
acteristics. All output signals are tristate; they leave
floating state only when STEN is active. The output
buffers of the bidirectional data pins D31–D0 are
also tristate; they leave floating state only in read
cycles when the MCP is selected (i.e. when STEN,
NPS1Ý, and NPS2 are all active).

Figure 3.1 and Table 3.2 together show the location
of every pin in the pin grid array.
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Table 3.1. Intel387TM DX MCP Pin Summary

Pin
Function

Active Input/ Referenced

Name State Output To

CPUCLK2 Intel386TM DX CPU CLocK 2 I

NUMCLK2 Intel387TM DX MCP CLocK 2 I

CKM Intel387TM DX MCP CLocKing Mode I

RESETIN System reset High I CPUCLK2

PEREQ Processor Extension High O CPUCLK2/STEN

REQuest

BUSYÝ Busy status Low O CPUCLK2/STEN

ERRORÝ Error status Low O NUMCLK2/STEN

D31–D0 Data pins High I/O CPUCLK2

W/RÝ Write/Read bus cycle Hi/Lo I CPUCLK2

ADSÝ ADdress Strobe Low I CPUCLK2

READYÝ Bus ready input Low I CPUCLK2

READYOÝ Ready output Low O CPUCLK2/STEN

STEN STatus ENable High I CPUCLK2

NPS1Ý MCP select Ý1 Low I CPUCLK2

NPS2 MCP select Ý2 High I CPUCLK2

CMD0Ý CoMmanD Low I CPUCLK2

VCC I

VSS I

NOTE:
STEN is referenced to only when getting the output pins into or out of tristate mode.

Table 3.2. Intel387TM DX MCP Pin Cross-Reference

ADSÝ Ð K7

BUSYÝ Ð K2

CKM Ð J11

CPUCLK24 Ð K10

CMD0Ý Ð L8

D0 Ð H2

D1 Ð H1

D2 Ð G2

D3 Ð G1

D4 Ð D2

D5 Ð D1

D6 Ð C2

D7 Ð C1

D8 Ð B1

D9 Ð A2

D10 Ð B3

D11 Ð A3

D12 Ð A4

D13 Ð B5

D14 Ð A5

D15 Ð B6

D16 Ð A7

D17 Ð B8

D18 Ð A8

D19 Ð B9

D20 Ð B10

D21 Ð A10

D22 Ð B11

D23 Ð C10

D24 Ð D10

D25 Ð D11

D26 Ð E10

D27 Ð E11

D28 Ð G10

D29 Ð G11

D30 Ð H10

D31 Ð H11

ERRORÝ Ð L2

NPS1Ý Ð L6

NPS2 Ð K6

NUMCLK2 Ð K11

PEREQ Ð K1

READYÝ Ð K8

READYOÝ Ð L3

RESETIN Ð L10

STEN Ð L4

W/RÝ Ð K4

VCC Ð A6, A9, B4,

E1, F1, F10,

J2, K5,

L7

VSS Ð B2, B7, C11,

E2, F2, F11,

J1, J10, L5

NO CONNECT Ð K9

TIE HIGH Ð K3, L9*

*Tie high pins may either be tied high with a pullup resistor or connected to VCC.

18

18



Intel387TM DX MATH COPROCESSOR

240448–5
*Pin 1

240448–6
*Pin 1

Figure 3.1. Intel387TM DX MCP Pin Configuration
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3.1.1 Intel386TM DX CPU CLOCK 2 (CPUCLK2)

This input uses the Intel386 DX CPU CLK2 signal to
time the bus control logic. Several other MCP sig-
nals are referenced to the rising edge of this signal.
When CKM e 1 (synchronous mode) this pin also
clocks the data interface and control unit and the
floating-point unit of the MCP. This pin requires
MOS-level input. The signal on this pin is divided by
two to produce the internal clock signal CLK.

3.1.2 Intel387TM DX MCP CLOCK 2 (NUMCLK2)

When CKM e 0 (asynchronous mode) this pin pro-
vides the clock for the data interface and control unit
and the floating-point unit of the MCP. In this case,
the ratio of the frequency of NUMCLK2 to the fre-

quency of CPUCLK2 must lie within the range 10:16
to 14:10. When CKM e 1 (synchronous mode) this
pin is ignored; CPUCLK2 is used instead for the data
interface and control unit and the floating-point unit.
This pin requires TTL-level input.

3.1.3 Intel387TM DX MCP CLOCKING MODE
(CKM)

This pin is a strapping option. When it is strapped to
VCC, the MCP operates in synchronous mode; when
strapped to VSS, the MCP operates in asynchronous
mode. These modes relate to clocking of the data
interface and control unit and the floating-point unit
only; the bus control logic always operates synchro-
nously with respect to the Intel386 DX Microproces-
sor.

240448–7

Figure 3.2. Asynchronous Operation
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3.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
MCP to terminate its present activity and to enter a
dormant state. RESETIN must remain HIGH for at
least 40 NUMCLK2 periods. The HIGH to LOW tran-
sitions of RESETIN must be synchronous with
CPUCLK2, so that the phase of the internal clock of
the bus control logic (which is the CPUCLK2 divided
by 2) is the same as the phase of the internal clock
of the Intel386 DX CPU. After RESETIN goes LOW,
at least 50 NUMCLK2 periods must pass before the
first MCP instruction is written into the Intel387 DX
MCP. This pin should be connected to the Intel386
DX CPU RESET pin. Table 3.3 shows the status of
other pins after a reset.

Table 3.3. Output Pin Status During Reset

Pin Value Pin Name

HIGH READYOÝ, BUSYÝ

LOW PEREQ, ERRORÝ

Tri-State OFF D31–D0

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the Intel386 DX CPU
that the MCP is ready for data transfer to/from its
data FIFO. When all data is written to or read from
the data FIFO, PEREQ is deactivated. This signal
always goes inactive before BUSYÝ goes inactive.
This signal is referenced to CPUCLK2. It should be
connected to the Intel386 DX CPU PEREQ input.

3.1.6 BUSY STATUS (BUSYÝ)

When active, this pin signals to the Intel386 DX CPU
that the MCP is currently executing an instruction.
This signal is referenced to CPUCLK2. It should be
connected to the Intel386 DX CPU BUSYÝ pin.

3.1.7 ERROR STATUS (ERRORÝ)

This pin reflects the ES bits of the status register.
When active, it indicates that an unmasked excep-
tion has occurred (except that, immediately after a
reset, it indicates to the Intel386 DX Microprocessor
that a Intel387 DX MCP is present in the system).
This signal can be changed to inactive state only by
the following instructions (without a preceding
WAIT): FNINIT, FNCLEX, FNSTENV, and FNSAVE.
This signal is referenced to NUMCLK2. It should be
connected to the Intel386 DX CPU ERRORÝ pin.

3.1.8 DATA PINS (D31–D0)

These bidirectional pins are used to transfer data
and opcodes between the Intel386 DX CPU and In-
tel387 DX MCP. They are normally connected direct-
ly to the corresponding Intel386 DX CPU data pins.
HIGH state indicates a value of one. D0 is the least
significant data bit. Timings are referenced to
CPUCLK2.

3.1.9 WRITE/READ BUS CYCLE (W/RÝ)

This signal indicates to the MCP whether the In-
tel386 DX CPU bus cycle in progress is a read or a
write cycle. This pin should be connected directly to
the Intel386 DX CPU W/RÝ pin. HIGH indicates a
write cycle; LOW, a read cycle. This input is ignored
if any of the signals STEN, NPS1Ý, or NPS2 is inac-
tive. Setup and hold times are referenced to
CPUCLK2.

3.1.10 ADDRESS STROBE (ADSÝ)

This input, in conjunction with the READYÝ input
indicates when the MCP bus-control logic may sam-
ple W/RÝ and the chip-select signals. Setup and
hold times are referenced to CPUCLK2. This pin
should be connected to the Intel386 DX CPU ADSÝ
pin.

21

21



Intel387TM DX MATH COPROCESSOR

3.1.11 BUS READY INPUT (READYÝ)

This input indicates to the MCP when a Intel386 DX
CPU bus cycle is to be terminated. It is used by the
bus-control logic to trace bus activities. Bus cycles
can be extended indefinitely until terminated by
READYÝ. This input should be connected to the
same signal that drives the Intel386 DX CPU
READYÝ input. Setup and hold times are refer-
enced to CPUCLK2.

3.1.12 READY OUTPUT (READYOÝ)

This pin is activated at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re-
quired, this pin must directly or indirectly drive the
Intel386 DX CPU READYÝ input. Refer to section
3.4 ‘‘Bus Operation’’ for details. This pin is activated
only during bus cycles that select the MCP. This sig-
nal is referenced to CPUCLK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the MCP. When
inactive, this pin forces BUSYÝ, PEREQ, ERRORÝ,
and READYOÝ outputs into floating state. D31–D0
are normally floating and leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other
chip-select inputs. STEN makes it easier to do on-
board testing (using the overdrive method) of other
chips in systems containing the MCP. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards that do not use on-
board testing, STEN should be connected to VCC.
Setup and hold times are relative to CPUCLK2. Note
that STEN must maintain the same setup and hold
times as NPS1Ý, NPS2, and CMD0Ý (i.e. if STEN
changes state during a Intel387 DX MCP bus cycle,
it should change state during the same CLK period
as the NPS1Ý, NPS2, and CMD0Ý signals).

3.1.14 MCP Select Ý1 (NPS1Ý)

When active (along with STEN and NPS2) in the first
period of a Intel386 DX CPU bus cycle, this signal
indicates that the purpose of the bus cycle is to com-

municate with the MCP. This pin should be connect-
ed directly to the Intel386 DX CPU M/IOÝ pin, so
that the MCP is selected only when the Intel386 DX
CPU performs I/O cycles. Setup and hold times are
referenced to CPUCLK2.

3.1.15 MCP SELECT Ý2 (NPS2)

When active (along with STEN and NPS1Ý) in the
first period of an Intel386 DX CPU bus cycle, this
signal indicates that the purpose of the bus cycle is
to communicate with the MCP. This pin should be
connected directly to the Intel386 DX CPU A31 pin,
so that the MCP is selected only when the Intel386
DX CPU uses one of the I/O addresses reserved for
the MCP (800000F8 or 800000FC). Setup and hold
times are referenced to CPUCLK2.

3.1.16 COMMAND (CMD0Ý)

During a write cycle, this signal indicates whether an
opcode (CMD0Ý active) or data (CMD0Ý inactive)
is being sent to the MCP. During a read cycle, it
indicates whether the control or status register
(CMD0Ý active) or a data register (CMD0Ý inactive)
is being read. CMD0Ý should be connected directly
to the A2 output of the Intel386 DX Microprocessor.
Setup and hold times are referenced to CPUCLK2.

3.2 Processor Architecture

As shown by the block diagram on the front page,
the MCP is internally divided into three sections: the
bus control logic (BCL), the data interface and con-
trol unit, and the floating point unit (FPU). The FPU
(with the support of the control unit which contains
the sequencer and other support units) executes all
numerics instructions. The data interface and control
unit is responsible for the data flow to and from the
FPU and the control registers, for receiving the in-
structions, decoding them, and sequencing the mi-
croinstructions, and for handling some of the admin-
istrative instructions. The BCL is responsible for the
Intel386 DX CPU bus tracking and interface. The
BCL is the only unit in the Intel387 DX MCP that
must run synchronously with the Intel386 DX CPU;
the rest of the MCP can run asynchronously with
respect to the Intel386 DX Microprocessor.
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3.2.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
I/O bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates I/O automatically when it
encounters ESC instructions, and the CPU uses re-
served I/O addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from memory to the MCP and
transferring outputs from the MCP to memory.

3.2.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, or FSTCW, the control executes it inde-

pendently of the FPU and the sequencer. The data
interface and control unit is the one that generates
the BUSYÝ, PEREQ and ERRORÝ signals that syn-
chronize Intel387 DX MCP activities with the In-
tel386 DX CPU. It also supports the FPU in all opera-
tions that it cannot perform alone (e.g. exceptions
handling, transcendental operations, etc.).

3.2.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.3 System Configuration

As an extension to the Intel386 DX Microprocessor,
the Intel387 DX Math Coprocessor can be connect-
ed to the CPU as shown by Figure 3.3. A dedicated

240448–8

Figure 3.3. Intel386TM DX Microprocessor and Intel387TM DX Math Coprocessor System Configuration
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Table 3.4. Bus Cycles Definition

STEN NPS1Ý NPS2 CMD0Ý W/RÝ Bus Cycle Type

0 x x x x MCP not selected and all

outputs in floating state

1 1 x x x MCP not selected

1 x 0 x x MCP not selected

1 0 1 0 0 CW or SW read from MCP

1 0 1 0 1 Opcode write to MCP

1 0 1 1 0 Data read from MCP

1 0 1 1 1 Data write to MCP

communication protocol makes possible high-speed
transfer of opcodes and operands between the In-
tel386 DX CPU and Intel387 DX MCP. The Intel387
DX MCP is designed so that no additional compo-
nents are required for interface with the Intel386 DX
CPU. The Intel387 DX MCP shares the 32-bit wide
local bus of the Intel386 DX CPU and most control
pins of the Intel387 DX MCP are connected directly
to pins of the Intel386 DX Microprocessor.

3.3.1 BUS CYCLE TRACKING

The ADSÝ and READYÝ signals allow the MCP to
track the beginning and end of the Intel386 DX CPU
bus cycles, respectively. When ADSÝ is asserted at
the same time as the MCP chip-select inputs, the
bus cycle is intended for the MCP. To signal the end
of a bus cycle for the MCP, READYÝ may be assert-
ed directly or indirectly by the MCP or by other bus-
control logic. Refer to Table 3.4 for definition of the
types of MCP bus cycles.

3.3.2 MCP ADDRESSING

The NPS1Ý, NPS2 and STEN signals allow the
MCP to identify which bus cycles are intended for
the MCP. The MCP responds only to I/O cycles
when bit 31 of the I/O address is set. In other words,
the MCP acts as an I/O device in a reserved I/O
address space.

Because A31 is used to select the MCP for data
transfers, it is not possible for a program running on
the Intel386 DX CPU to address the MCP with an I/
O instruction. Only ESC instructions cause the In-
tel386 DX Microprocessor to communicate with the
MCP. The Intel386 DX CPU BS16Ý input must be
inactive during I/O cycles when A31 is active.

3.3.3 FUNCTION SELECT

The CMD0Ý and W/RÝ signals identify the four
kinds of bus cycle: control or status register read,
data read, opcode write, data write.

3.3.4 CPU/MCP Synchronization

The pin pairs BUSYÝ, PEREQ, and ERRORÝ are
used for various aspects of synchronization between
the CPU and the MCP.

BUSYÝ is used to synchronize instruction transfer
from the Intel386 DX CPU to the MCP. When the
MCP recognizes an ESC instruction, it asserts
BUSYÝ. For most ESC instructions, the Intel386 DX
CPU waits for the MCP to deassert BUSYÝ before
sending the new opcode.

The MCP uses the PEREQ pin of the Intel386 DX
CPU to signal that the MCP is ready for data transfer
to or from its data FIFO. The MCP does not directly
access memory; rather, the Intel386 DX Microproc-
essor provides memory access services for the
MCP. Thus, memory access on behalf of the MCP
always obeys the rules applicable to the mode of the
Intel386 DX CPU, whether the Intel386 DX CPU be
in real-address mode or protected mode.

Once the Intel386 DX CPU initiates an MCP instruc-
tion that has operands, the Intel386 DX CPU waits
for PEREQ signals that indicate when the MCP is
ready for operand transfer. Once all operands have
been transferred (or if the instruction has no oper-
ands) the Intel386 DX CPU continues program exe-
cution while the MCP executes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com-
mands and operands. In 80286/80287, Intel386 DX
Microprocessor and Intel387 DX Math Coprocessor
systems, WAIT instructions are required only for op-
erand synchronization; namely, after MCP stores to
memory (except FSTSW and FSTCW) or loads from
memory. Used this way, WAIT ensures that the val-
ue has already been written or read by the MCP be-
fore the CPU reads or changes the value.
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Once it has started to execute a numerics instruction
and has transferred the operands from the Intel386
DX CPU, the MCP can process the instruction in par-
allel with and independent of the host CPU. When
the MCP detects an exception, it asserts the ER-
RORÝ signal, which causes a Intel386 DX CPU in-
terrupt.

3.3.5 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the Intel387 DX MCP (the FPU)
can either operate directly from the CPU clock (syn-
chronous mode) or from a separate clock (asynchro-
nous mode). The two configurations are distin-
guished by the CKM pin. In either case, the bus con-
trol logic (BCL) of the MCP is synchronized with the
CPU clock. Use of asynchronous mode allows the
Intel386 DX CPU and the FPU section of the MCP to
run at different speeds. In this case, the ratio of the
frequency of NUMCLK2 to the frequency of
CPUCLK2 must lie within the range 10:16 to 14:10.
Use of synchronous mode eliminates one clock gen-
erator from the board design.

3.3.6 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re-
quired, READYOÝ can be used to drive the Intel386
DX CPU READYÝ input. If this pin is used, it should
be connected to the logic that ORs all READY out-
puts from peripherals on the Intel386 DX CPU bus.
READYOÝ is asserted by the MCP only during I/O
cycles that select the MCP. Refer to section 3.4
‘‘Bus Operation’’ for details.

3.4 Bus Operation

With respect to the bus interface, the Intel387 DX
MCP is fully synchronous with the Intel386 DX Mi-
croprocessor. Both operate at the same rate, be-
cause each generates its internal CLK signal by di-
viding CPUCLK2 by two.

The Intel386 DX CPU initiates a new bus cycle by
activating ADSÝ. The MCP recognizes a bus cycle,
if, during the cycle in which ADSÝ is activated,
STEN, NPS1Ý, and NPS2 are all activated. Proper
operation is achieved if NPS1Ý is connected to the
M/IOÝ output of the Intel386 DX CPU, and NPS2 to
the A31 output. The Intel386 DX CPU’s A31 output
is guaranteed to be inactive in all bus cycles that do
not address the MCP (i.e. I/O cycles to other devic-
es, interrupt acknowledge, and reserved types of
bus cycles). System logic must not signal a 16-bit
bus cycle via the Intel386 DX CPU BS16Ý input dur-
ing I/O cycles when A31 is active.

During the CLK period in which ADSÝ is activated,
the MCP also examines the W/RÝ input signal to
determine whether the cycle is a read or a write cy-
cle and examines the CMD0Ý input to determine
whether an opcode, operand, or control/status reg-
ister transfer is to occur.

The Intel387 DX MCP supports both pipelined and
nonpipelined bus cycles. A nonpipelined cycle is one
for which the Intel386 DX CPU asserts ADSÝ when
no other MCP bus cycle is in progress. A pipelined
bus cycle is one for which the Intel386 DX CPU as-
serts ADSÝ and provides valid next-address and
control signals as soon as in the second CLK period
after the ADSÝ assertion for the previous Intel386
DX CPU bus cycle. Pipelining increases the availabil-
ity of the bus by at least one CLK period. The MCP
supports pipelined bus cycles in order to optimize
address pipelining by the Intel386 DX CPU for mem-
ory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 3.4 illustrates the states and
state transitions for MCP bus cycles:

# TI is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after evey nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

# TRS is the READYÝ sensitive state. Different
types of bus cycle may require a minimum of one
or two successive TRS states. The bus logic re-
mains in TRS state until READYÝ is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READYÝ, thereby causing additional successive
TRS states.

# TP is the first state for every pipelined bus cycle.

240448–9

Figure 3.4. Bus State Diagram
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The READYOÝ output of the Intel387 DX MCP indi-
cates when a bus cycle for the MCP may be termi-
nated if no extra wait states are required. For all
write cycles (except those for the instructions
FLDENV and FRSTOR), READYOÝ is always as-
serted in the first TRS state, regardless of the num-
ber of wait states. For all read cycles and write cy-
cles for FLDENV and FRSTOR, READYOÝ is al-
ways asserted in the second TRS state, regardless
of the number of wait states. These rules apply to
both pipelined and nonpipelined cycles. Systems de-
signers must use READYOÝ in one of the following
ways:

1. Connect it (directly or through logic that ORs
READY signals from other devices) to the
READYÝ inputs of the Intel386 DX CPU and In-
tel387 DX MCP.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
MCP bus cycles.

Because different instructions have different
amounts of overhead before, between, and after op-
erand transfer cycles, it is not possible to represent
in a few diagrams all of the combinations of succes-
sive operand transfer cycles. The following bus-cy-
cle diagrams show memory cycles between MCP
operand-transfer cycles. Note however that, during
the instructions FLDENV, FSTENV, FSAVE, and
FRSTOR, some consecutive accesses to the MCP
do not have intervening memory accesses. For the
timing relationship between operand transfer cycles
and opcode write or other overhead activities, see
Figure 3.8.

3.4.1 NONPIPELINED BUS CYCLES

Figure 3.5 illustrates bus activity for consecutive
nonpipelined bus cycles.

3.4.1.1 Write Cycle

At the second clock of the bus cycle, the Intel387
DX MCP enters the TRS (READYÝ-sensitive) state.
During this state, the Intel387 DX MCP samples the
READYÝ input and stays in this state as long as
READYÝ is inactive.

In write cycles, the MCP drives the READYOÝ sig-
nal for one CLK period beginning with the second
CLK of the bus cycle; therefore, the fastest write
cycle takes two CLK cycles (see cycle 2 of Figure
3.5). For the instructions FLDENV and FRSTOR,
however, the MCP forces a wait state by delaying
the activation of READYOÝ to the second TRS cy-
cle (not shown in Figure 3.5).

When READYÝ is asserted the MCP returns to the
idle state, in which ADSÝ could be asserted again
by the Intel386 DX Microprocessor for the next cy-
cle.

3.4.1.2 Read Cycle

At the second clock of the bus cycle, the MCP en-
ters the TRS state. See Figure 3.5. In this state, the
MCP samples the READYÝ input and stays in this
state as long as READYÝ is inactive.

At the rising edge of CLK in the second clock period
of the cycle, the MCP starts to drive the D31–D0
outputs and continues to drive them as long as it
stays in TRS state.

In read cycles that address the MCP, at least one
wait state must be inserted to insure that the In-
tel386 DX CPU latches the correct data. Since the
MCP starts driving the system data bus only at the
rising edge of CLK in the second clock period of the
bus cycle, not enough time is left for the data signals
to propagate and be latched by the Intel386 DX CPU
at the falling edge of the same clock period. The
MCP drives the READYOÝ signal for one CLK peri-
od in the third CLK of the bus cycle. Therefore, if the
READYOÝ output is used to drive the Intel386 DX
CPU READYÝ input, one wait state is inserted auto-
matically.

Because one wait state is required for MCP reads,
the minimum is three CLK cycles per read, as cycle
3 of Figure 3.5 shows.

When READYÝ is asserted the MCP returns to the
idle state, in which ADSÝ could be asserted again
by the Intel386 DX CPU for the next cycle. The tran-
sition from TRS state to idle state causes the MCP to
put the tristate D31–D0 outputs into the floating
state, allowing another device to drive the system
data bus.
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Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or TI states for various non-operand transfer cycles and overhead.

Figure 3.5. Nonpipelined Read and Write Cycles

3.4.2 PIPELINED BUS CYCLES

Because all the activities of the Intel387 DX MCP
bus interface occur either during the TRS state or
during the transitions to or from that state, the only
difference between a pipelined and a nonpipelined
cycle is the manner of changing from one state to
another. The exact activities in each state are de-
tailed in the previous section ‘‘Nonpipelined Bus Cy-
cles’’.

When the Intel386 DX CPU asserts ADSÝ before
the end of a bus cycle, both ADSÝ and READYÝ
are active during a TRS state. This condition causes
the MCP to change to a different state named TP.
The MCP activities in the transition from a TRS state
to a TP state are exactly the same as those in the
transition from a TRS state to a TI state in nonpipe-
lined cycles.

TP state is metastable; therefore, one clock period
later the MCP returns to TRS state. In consecutive
pipelined cycles, the MCP bus logic uses only TRS
and TP states.

Figure 3.6 shows the fastest transition into and out
of the pipelined bus cycles. Cycle 1 in this figure
represents a nonpipelined cycle. (Nonpipelined write
cycles with only one TRS state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READYÝ is asserted before the earliest
possible assertion of ADSÝ for the next cycle.)

Figure 3.7 shows the pipelined write and read cycles
with one additional TRS states beyond the minimum
required. To delay the assertion of READYÝ re-
quires external logic.
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3.4.3 BUS CYCLES OF MIXED TYPE

When the Intel387 DX MCP bus logic is in the TRS
state, it distinguishes between nonpipelined and
pipelined cycles according to the behavior of ADSÝ
and READYÝ. In a nonpipelined cycle, only
READYÝ is activated, and the transition is from TRS
to idle state. In a pipelined cycle, both READYÝ and
ADSÝ are active and the transition is first from TRS
state to TP state then, after one clock period, back
to TRS state.

3.4.4 BUSYÝ AND PEREQ TIMING
RELATIONSHIP

Figure 3.8 shows the activation of BUSYÝ at the
beginning of instruction execution and its deactiva-

tion after execution of the instruction is complete.
When possible, the Intel387 DX MCP may deacti-
vate BUSYÝ prior to the completion of the current
instruction allowing the CPU to transfer the next in-
struction’s opcode and operands. PEREQ is activat-
ed in this interval. If ERRORÝ (not shown in the
diagram) is ever asserted, it would occur at least six
CPUCLK2 periods after the deactivation of PEREQ
and at least six CPUCLK2 periods before the deacti-
vation of BUSYÝ. Figure 3.8 shows also that STEN
is activated at the beginning of a bus cycle.

240448–11

Cycle 1–Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READYÝ and ADSÝ are sampled active at the end of a TRS
state of the current cycle.

Figure 3.6. Fastest Transitions to and from Pipelined Cycles
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NOTE:
1. Cycles between operand write to the MCP and storing result.

Figure 3.7. Pipelined Cycles with Wait States

240448–13

NOTES:
1. Instruction dependent.
2. PEREQ is an asynchronous input to the Intel386TM DX Microprocessor; it may not be asserted (instruction depen-
dent).
3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 3.8. STEN, BUSYÝ and PEREQ Timing Relationship
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4.0 ELECTRICAL DATA

4.1 Absolute Maximum Ratings*

Case Temperature TC
Under Bias ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀb65§C to a110§C

Storage Temperature ÀÀÀÀÀÀÀÀÀÀb65§C to a150§C
Voltage on Any Pin with

Respect to Ground ÀÀÀÀÀÀÀÀÀb0.5 to VCC a0.5V

Power DissipationÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ1.5W

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the ‘‘Absolute
Maximum Ratings’’ may cause permanent damage.
These are stress ratings only. Operation beyond the
‘‘Operating Conditions’’ is not recommended and ex-
tended exposure beyond the ‘‘Operating Conditions’’
may affect device reliability.

4.2 DC Characteristics

Table 4.1. DC Specifications TC e 0§ to 85§C, VCC e 5V g5%

Symbol Parameter Min Max Units Test Conditions

VIL Input LO Voltage b0.3 a0.8 V (Note 1)

VIH Input HI Voltage 2.0 VCC a 0.3 V (Note 1)

VCL CPUCLK2 Input LO Voltage b0.3 a0.8 V

VCH CPUCLK2 Input HI Voltage 3.7 VCC a0.3 V

VOL Output LO Voltage 0.45 V (Note 2)

VOH Output HI Voltage 2.4 V (Note 3)

ICC Supply Current

NUMCLK2 e 32 MHz(4) 160 mA ICC typ. e 95 mA

NUMCLK2 e 40 MHz(4) 180 mA ICC typ. e 105 mA

NUMCLK2 e 50 MHz(4) 210 mA ICC typ. e 125 mA

NUMCLK2 e 66.6 MHz(4) 250 mA ICC typ. e 150 mA

ILI Input Leakage Current g15 mA 0V s VIN s VCC

ILO I/O Leakage Current g15 mA 0.45V s VO s VCC

CIN Input Capacitance 10 pF fc e 1 MHz

CO I/O or Output Capacitance 12 pF fc e 1 MHz

CCLK Clock Capacitance 15 pF fc e 1 MHz

NOTES:
1. This parameter is for all inputs, including NUMCLK2 but excluding CPUCLK2.
2. This parameter is measured at IOL as follows:

data e 4.0 mA
READYOÝ e 2.5 mA
ERRORÝ, BUSYÝ, PEREQ e 2.5 mA

3. This parameter is measured at IOH as follows:
data e 1.0 mA
READYOÝ e 0.6 mA
ERRORÝ, BUSYÝ, PEREQ e 0.6 mA

4. ICC is measured at steady state, maximum capacitive loading on the outputs, CPUCLK2 at the same frequency as
NUMCLK2.
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4.3 AC Characteristics

Table 4.2a. i387 DX/i386 DX Interface and Execution Frequencies

Frequency (MHz)

i386 DX System
i387 DX 16-33

Execution Frequency (MHz)

Min Max

16 MHz 10.0 MHz 22.4 MHz
20 MHz 12.5 MHz 28.0 MHz
25 MHz 15.6 MHz 33.0 MHz
33 MHz 20.6 MHz 33.0 MHz

NOTE:
The external clock frequencies for the i387 DX and i386 DX are
equal to twice the interface and execution frequencies show
above.

Table 4.2b. Timing Requirements of the Execution Unit

TC e 0§C to a85§C, VCC e 5V g5%

Pin Symbol Parameter
16 MHz–33 MHz

Conditions

Test

Reference

Figure

Min (ns) Max (ns)

NUMCLK2 t1 Period 15 125 2.0V 4.1
NUMCLK2 t2a High Time 6.25 2.0V
NUMCLK2 t2b High Time 4.5 3.7V
NUMCLK2 t3a Low Time 6.25 2.0V
NUMCLK2 t3b Low Time 4.5 0.8V
NUMCLK2 t4 Fall Time 6 3.7V to 0.8V
NUMCLK2 t5 Rise Time 6 0.8V to 2.7V

Table 4.2c. Timing Requirements of the Bus Interface Unit

TC e 0§C to a85§C, VCC e 5V g5%

(All measurements made at 1.5V and 50 pF unless otherwise specified)

Pin Symbol Parameter
16 MHz–33 MHz

Conditions

Test

Reference

Figure

Min (ns) Max (ns)

CPUCLK2 t1 Period 15 125 2.0V 4.1
CPUCLK2 t2a High Time 6.25 2.0V
CPUCLK2 t2b High Time 4.5 3.7V
CPUCLK2 t3a Low Time 6.25 2.0V
CPUCLK2 t3b Low Time 4.5 0.8V
CPUCLK2 t4 Fall Time 6 3.7V to 0.8V
CPUCLK2 t5 Rise Time 6 0.8V to 3.7V

NUMCLK2/ Ratio 10/16 14/10
CPUCLK2

READYOÝ t7 Out Delay 4 17 4.2
READYOÝ(1) t7 Out Delay 4 15 CL e 25 pF
PEREQ t7 Out Delay 4 25
BUSYÝ t7 Out Delay 4 21
BUSYÝ(1) t7 Out Delay 4 19 CL e 25 pF
ERRORÝ t7 Out Delay 4 25

D31–D0 t8 Out Delay 0 37 4.3
D31–D0 t10 Setup Time 8
D31–D0 t11 Hold Time 8
D31–D0(2) t12 Float Time 3 19
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Table 4.2c. Timing Requirements of the Bus Interface Unit (Continued)

TC e 0§C to a85§C, VCC e 5V g5%

(All measurements made at 1.5V and 50 pF unless otherwise specified)

Pin Symbol Parameter
16 MHz–33 MHz

Conditions

Test

Reference

Figure

Min (ns) Max (ns)

PEREQ(2) t13 Float Time 1 30 4.5
BUSYÝ(2) t13 Float Time 1 30
ERRORÝ(2) t13 Float Time 1 30
READYOÝ(2) t13 Float Time 1 30

ADSÝ t14 Setup Time 13 4.3
ADSÝ t15 Hold Time 4
W/RÝ t14 Setup Time 13
W/RÝ t15 Hold Time 4

READYÝ t16 Setup Time 7
READYÝ t17 Hold Time 4
CMDOÝ t16 Setup Time 13
CMDOÝ t17 Hold Time 2
NPS1Ý t16 Setup Time 13
NPS2
NPS1Ý t17 Hold Time 2
NPS2
STEN t16 Setup Time 13
STEN t17 Hold Time 2

RESETIN t18 Setup Time 5 4.4
RESETIN t19 Hold Time 3

NOTES:
1. Not tested at 25 pF.
2. Float delay is not tested. Float condition occurs when maximum output current becomes less than ILO in magnitude.

*nom - nominal value 240448–14

NOTE:
This graph will not be linear outside of the CL range
shown.

Figure 4.0a. Typical Output Valid Delay vs Load

Capacitance at Max Operating Temperature

240448–15

NOTE:
This graph will not be linear outside of the CL range
shown.

Figure 4.0b. Typical Output Rise Time vs Load

Capacitance at Max Operating Temperature
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240448–16

Figure 4.1. CPUCLK2/NUMCLK2 Waveform and Measurement Points for

Input/Output A.C. Specifications

240448–17

Figure 4.2. Output Signals
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240448–18

Figure 4.3. Input and I/O Signals

NOTE: 240448–19

The second internal processor phase following RESET high to low transition is PH2.

Figure 4.4. RESET Signal

240448–20

Figure 4.5. Float from STEN
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Table 4.3. Other Parameters

Pin Symbol Parameter Min Max Units

RESETIN t30 Duration 40 NUMCLK2

RESETIN t31 RESETIN Inactive to 1st Opcode Write 50 NUMCLK2

BUSYÝ t32 Duration 6 CPUCLK2

BUSYÝ, ERRORÝ t33 ERRORÝ (In) Active to BUSYÝ Inactive 6 CPUCLK2

PEREQ, ERRORÝ t34 PEREQ Inactive to ERRORÝ Active 6 CPUCLK2

READYÝ, BUSYÝ t35 READYÝ Active to BUSYÝ Active 4 4 CPUCLK2

READYÝ t36 Minimum Time from Opcode Write to 6 CPUCLK2

Opcode/Operand Write

READYÝ t37 Minimum Time from Operand Write to 8 CPUCLK2

Operand Write

240448–21

* In NUMCLK2’s
** or last operand

NOTE:
1. Memory read (operand) cycle is not shown.

Figure 4.6. Other Parameters

35

35



Intel387TM DX MATH COPROCESSOR

Instruction Optional

First Byte Second Byte
Fields

1 11011 OPA 1 MOD 1 OPB R/M SIB DISP

2 11011 MF OPA MOD OPB R/M SIB DISP

3 11011 d P OPA 1 1 OPB ST(i)

4 11011 0 0 1 1 1 1 OP

5 11011 0 1 1 1 1 1 OP

15–11 10 9 8 7 6 5 4 3 2 1 0

5.0 Intel387TM DX MCP EXTENSIONS
TO THE Intel386TM DX CPU
INSTRUCTION SET

Instructions for the Intel387 DX MCP assume one of
the five forms shown in the following table. In all
cases, instructions are at least two bytes long and
begin with the bit pattern 11011B, which identifies
the ESCAPE class of instruction. Instructions that
refer to memory operands specify addresses using
the Intel386 DX CPU addressing modes.

OP e Instruction opcode, possible split into two
fields OPA and OPB

MF e Memory Format
00Ð32-bit real
01Ð32-bit integer
10Ð64-bit real
11Ð16-bit integer

P e Pop
0ÐDo not pop stack
1ÐPop stack after operation

ESC e 11011

d e Destination
0ÐDestination is ST(0)
1ÐDestination is ST(i)

R XOR d e 0ÐDestination (op) Source
R XOR d e 1ÐSource (op) Destination

ST(i) e Register stack element i
000 e Stack top
001 e Second stack element

#
#
#

111 e Eighth stack element

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of the Intel386 DX Microprocessor
instructions (refer to Intel386 TM DX Microprocessor
Programmer’s Reference Manual ).

SIB (Scale Index Base) byte and DISP (displace-
ment) are optionally present in instructions that have
MOD and R/M fields. Their presence depends on
the values of MOD and R/M, as for Intel386 DX Mi-
croprocessor instructions.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re-
quest delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and R/M fields
that call for both base and index registers, add one
clock.
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Intel387TM DX MCP Extensions to the Intel386TM DX CPU Instruction Set

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–6 Real Integer Real Integer

DATA TRANSFER

FLD e Loada

Integer/real memory to ST(0) ESC MF 1 MOD 000 R/M SIB/DISP 9–18 26–42 16–23 42–53

Long integer memory to ST(0) ESC 111 MOD 101 R/M SIB/DISP 26–54

Extended real memory to ST(0) ESC 011 MOD 101 R/M SIB/DISP 12–43

BCD memory to ST(0) ESC 111 MOD 100 R/M SIB/DISP 45–97

ST(i) to ST(0) ESC 001 11000 ST(i) 7–12

FST e Store

ST(0) to integer/real memory ESC MF 1 MOD 010 R/M SIB/DISP 25–43 57–76 32–44 58–76

ST(0) to ST(i) ESC 101 11010 ST(i) 7–11

FSTP e Store and Pop

ST(0) to integer/real memory ESC MF 1 MOD 011 R/M SIB/DISP 25–43 57–76 32–44 58–76

ST(0) to long integer memory ESC 111 MOD 111 R/M SIB/DISP 60–82

ST(0) to extended real ESC 011 MOD 111 R/M SIB/DISP 46–52

ST(0) to BCD memory ESC 111 MOD 110 R/M SIB/DISP 112–190

ST(0) to ST(i) ESC 101 11011 ST (i) 7–11

FXCH e Exchange

ST(i) and ST(0) ESC 001 11001 ST(i) 10–17

COMPARISON

FCOM e Compare

Integer/real memory to ST(0) ESC MF 0 MOD 010 R/M SIB/DISP 13–25 34–52 14–27 39–62

ST(i) to ST(0) ESC 000 11010 ST(i) 13–21

FCOMP e Compare and pop

Integer/real memory to ST ESC MF 0 MOD 011 R/M SIB/DISP 13–25 34–52 14–27 39–62

ST(i) to ST(0) ESC 000 11011 ST(i) 13–21

FCOMPP e Compare and pop twice

ST(1) to ST(0) ESC 110 1101 1001 13–21

FTST e Test ST(0) ESC 001 1110 0100 17–25

FUCOM e Unordered compare ESC 101 11100 ST(i) 13–21

FUCOMP e Unordered compare

and pop ESC 101 11101 ST(i) 13–21

FUCOMPP e Unordered compare
and pop twice ESC 010 1110 1001 13–21

FXAM e Examine ST(0) ESC 001 11100101 24–37

CONSTANTS

FLDZ e Load a0.0 into ST(0) ESC 001 1110 1110 10–17

FLD1 e Load a1.0 into ST(0) ESC 001 1110 1000 15–22

FLDPI e Load pi into ST(0) ESC 001 1110 1011 26–36

FLDL2T e Load log2(10) into ST(0) ESC 001 1110 1001 26–36

Shaded areas indicate instructions not available in 8087/80287.

NOTE:
a. When loading single- or double-precision zero from memory, add 5 clocks.
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Intel387TM DX MCP Extensions to the Intel386TM DX CPU Instruction Set (Continued)

Encoding Clock Count Range

Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2–6 Real Integer Real Integer

CONSTANTS (Continued)

FLDL2E e Load log2(e) into ST(0) ESC 001 1110 1010 26–36

FLDLG2 e Load log10(2) into ST(0) ESC 001 1110 1100 25–35

FLDLN2 e Load loge(2) into ST(0) ESC 001 1110 1101 26–38

ARITHMETIC

FADD e Add

Integer/real memory with ST(0) ESC MF 0 MOD 000 R/M SIB/DISP 12–29 34–56 15–34 38–64

ST(i) and ST(0) ESC d P 0 11000 ST(i) 12–26b

FSUB e Subtract

Integer/real memory with ST(0) ESC MF 0 MOD 10 R R/M SIB/DISP 12–29 34–56 15–34 38–64c

ST(i) and ST(0) ESC d P 0 1110 R R/M 12–26d

FMUL e Multiply

Integer/real memory with ST(0) ESC MF 0 MOD 001 R/M SIB/DISP 19–32 43–71 23–53 46–74

ST(i) and ST(0) ESC d P 0 1100 1 R/M 17–50e

FDIV e Divide

Integer/real memory with ST(0) ESC MF 0 MOD 11 R R/M SIB/DISP 77-85 101–114f 81–91 105–124g

ST(i) and ST(0) ESC d P 0 1111 R R/M 77-80h

FSQRTi e Square root ESC 001 1111 1010 97–111

FSCALE e Scale ST(0) by ST(1) ESC 001 1111 1101 44–82

FPREM e Partial remainder ESC 001 1111 1000 56–140

FPREM1 e Partial remainder

(IEEE) ESC 001 1111 0101 81–168

FRNDINT e Round ST(0) ESC 001 1111 1100 41–62
to integer

FXTRACT e Extract components
of ST(0) ESC 001 1111 0100 42–63

FABS e Absolute value of ST(0) ESC 001 1110 0001 14–21

FCHS e Change sign of ST(0) ESC 001 1110 0000 17–24

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
b. Add 3 clocks to the range when d e 1.
c. Add 1 clock to each range when R e 1.
d. Add 3 clocks to the range when d e 0.
e. typical e 52 (When d e 0, 46–54, typical e 49).
f. Add 1 clock to the range when R e 1.
g. 135–141 when R e 1.
h. Add 3 clocks to the range when d e 1.
i. b0 s ST(0) s a%.
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Intel387TM DX MCP Extensions to the Intel386TM DX CPU Instruction Set (Continued)

Encoding
Instruction Byte Byte Optional Clock Count Range

0 1 Bytes 2–6

TRANSCENDENTAL

FCOSk e Cosine of ST(0) ESC 001 1111 1111 122–680

FPTANk e Partial tangent of ST(0) ESC 001 1111 0010 162–430j

FPATAN e Partial arctangent ESC 001 1111 0011 250–420

FSINk e Sine of ST(0) ESC 001 1111 1110 121–680

FSINCOSk e Sine and cosine of ST(0) ESC 001 1111 1011 150–650

F2XM1l e 2ST(0) b 1 ESC 001 1111 0000 167–410

FYL2Xm e ST(1) * log2(ST(0)) ESC 001 1111 0001 99–436

FYL2XP1n e ST(1) * log2(ST(0) a 1.0) ESC 001 1111 1001 210–447

PROCESSOR CONTROL

FINIT e Initialize MCP ESC 011 1110 0011 33

FSTSW AX e Store status word ESC 111 1110 0000 13

FLDCW e Load control word ESC 001 MOD 101 R/M SIB/DISP 19

FSTCW e Store control word ESC 101 MOD 111 R/M SIB/DISP 15

FSTSW e Store status word ESC 101 MOD 111 R/M SIB/DISP 15

FCLEX e Clear exceptions ESC 011 1110 0010 11

FSTENV e Store environment ESC 001 MOD 110 R/M SIB/DISP 103–104

FLDENV e Load environment ESC 001 MOD 100 R/M SIB/DISP 71

FSAVE e Save state ESC 101 MOD 110 R/M SIB/DISP 375–376

FRSTOR e Restore state ESC 101 MOD 100 R/M SIB/DISP 308

FINCSTP e Increment stack pointer ESC 001 1111 0111 21

FDECSTP e Decrement stack pointer ESC 001 1111 0110 22

FFREE e Free ST(i) ESC 101 1100 0 ST(i) 18

FNOP e No operations ESC 001 1101 0000 12

Shaded areas indicate instructions not available in 8087/80287.

NOTES:
j. These timings hold for operands in the range lxl k q/4. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.
k. 0 s l ST(0) l k 263.
l. b1.0 s ST(0) s 1.0.
m. 0 s ST(0) k %, b% k ST(1) k a%.
n. 0 s lST(0)l k (2 b SQRT(2))/2, b% k ST(1) k a%.
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APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 MCP
and the 8087 MCP, exception-handling routinesmay
need to be changed.

This appendix summarizes the differences between
the 80287 MCP and the 8087 MCP, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1. The MCP signals exceptions through a dedicated
ERRORÝ line to the 80286. The MCP error signal
does not pass through an interrupt controller (the
8087 INT signal does). Therefore, any interrupt-
controller-oriented instructions in numeric excep-
tion handlers for the 8086/8087 should be delet-
ed.

2. The 8087 instructions FENI/FNENI and FDISI/
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will effectively
be ignoredÐnone of the 80287 internal states will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception-
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine.

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op-
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287’s saved instruction and address pointers is
different than for the 8087. The instruction op-
code is not saved in Protected modeÐexception
handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either TS (task switched) or
EM (emulation) of the 80286 MSW set (TS e 1 or
EM e 1). If TS is set, then a WAIT instruction will
also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han-
dle these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment’s size. Interrupt 13 will occur if the start-
ing address of a numeric operand falls outside a
segment’s size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati-
cally synchronized by the 80286 CPUÐthe 80286
automatically tests the BUSYÝ line from the
80287 to ensure that the 80287 has completed its
previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are
required to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex-
plicit WAITs are required before each numeric in-
struction to ensure synchronization. Although
8086/8087 programs having explicit WAIT in-
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT in-
structions are unnecessary.

9. Since the 80287 does not require WAIT instruc-
tions before each numeric instruction, the
ASM286 assembler does not automatically gener-
ate these WAIT instructions. The ASM86 assem-
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu-
meric routines generated using the ASM86 as-
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re-
sult in a more compact code image.

The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in-
structions cause ASM286 to precede the ESC in-
struction with a CPU WAIT instruction, in the iden-
tical manner as does ASM86.

DATA SHEET REVISION REVIEW

The following list represents the key differences be-
tween this and the -003 versions of the Intel387TM

Math Coprocessor Data Sheet. Please review this
summary carefully.

1. Corrected typographical errors.

2. Corrected clock ratio ‘‘PIN’’ name on Table 4.2c
to NUMCLK/CPUCLK.

A-1
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