O O INTEL387TMDXO O [oooogoopcBOODOOO02000000

intal.
tel Intel387™ DX
MATH COPROCESSOR

m High Performance 80-Bit Internal m Upward Object-Code Compatible from
Architecture 8087 and 80287

m Implements ANSI/IEEE Standard 754- m Full-Range Transcendental Operations
1985 for Binary Floating-Point for SINE, COSINE, TANGENT,
Arithmetic ARCTANGENT and LOGARITHM

m Expands Intel386™ DX CPU Data m Built-In Exception Handling

Types to Include 32-, 64-, 80-Bit m O

: . n perates Independently of Real,
Float_lqg Point, 32-, 64-Bit Integers and Protected and Virtual-8¥)86 Modes of
18-Digit BCD Operands the Intel386™ DX Microprocessor

B e, CTU m Eight 80-Bit Numeric Registers, Usable
nstruction'Set to Include as Individually Addressable General

Trigonometric, Logarithmic, Reaisters or Reaister Stack
Exponential and Arithmetic Instructions egisters or as a Register Stac

for All Data Types m Available in 68-Pin PGA Package

m One Version Supports 16 MHz-33 MHz
Speeds
(See Packaging Spec: Order #231369)

The Intel387™ DX Math CoProcessor (MCP) is an extension of the Intel386™ microprocessor architecture.
The combination of the Intel387 DX MCP with the Intel386™ DX Microprocessor dramatically increases the
processing speed of computer application software which utilize mathematical operations. This makes an ideal
computer workstation platform for applications such as financial modeling and spreadsheets, CAD/CAM, or
graphics.

The Intel387 DX Math CoProcessor adds over seventy mnemonics to the Intel386 DX Microprocessor instruc-
tion set. Specific Intel387 DX MCP math operations include logarithmic, arithmetic, exponential, and trigono-
metric functions. The Intel387 DX MCP supports integer, extended integer, floating point and BCD data
formats, and fully conforms to the ANSI/IEEE floating point standard.

The Intel387 DX Math CoProcessor is object code compatible with the Intel387 SX MCP, and upward object
code compatible from the 80287 and 8087 math coprocessors. Object code for Intel386 DX/Intel387 DX is
also compatible with the Intel486™ microprocessor. The Intel387 DX MCP is manufactured on 1 micron,
CHMOS IV technology and packaged in a 68-pin PGA package.

T
BUS CONTROL LOGIC DATA INTERFACE AND CONTROL UNIT 1 FLOATING POINT UNIT

32 al DBUS INTERFACE |

P| DATA ALIGNMENT AND OPERAND CHECKING
STATUS WORD L

inTernaL | 7 r 3
ATA

DATA

Bl) o kel
I T 2) et}

(2}

| VIl BN PE I
EXPONENT ADDER [W L4 {3} A W | OPERAND REGISTER
' (16-8IT) (A AND B)
1 {4} 8]
% PE N
[operanp o exe [> (5) & > MA?;’:BSSEAW;ETER
< I M -
| LFeesTER (re-em I‘.} é ©) % ‘-’I SUM REGISTER
R (7) W
Micro INSTRUCTION BUS | [operanp A exp
REGISTER (16-8T) REGISTER FILE (STACK)
[} (8x80 BITS)
MICRO
INSTRUCTION

‘CONSTANT ROM
(44x67 BITS)
SEQUENCER
R | FPU CONTROL +
STATUS BUS CORDICS NANO=MACHINE
|
ic
1

DATA FIFO
2.5x32 BIT
REGISTERS

D0-D31

To-BIT LEFT/RIGHT
BARREL SHIFTER +
68-BIT REGISTER

INSTRUCTION
DECODER

ADDRESS &,
BUS CONTROL'

CPUCLK2 NUMCLKZ 240448-1
Figure 0.1. Intel387™ DX Math CoProcessor Block Diagram

*Other brands and names are the property of their respective owners.

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

March 1992 Order Number: 240448-005
COPYRIGHT © INTEL CORPORATION, 1995 1

http://www.dzsc.com/ic/sell_search.html?keyword=INTEL387TMDX
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Intel387™V DX Math CoProcessor

CONTENTS PAGE
1.0 FUNCTIONAL DESCRIPTION e 5
2.0 PROGRAMMING INTERFACE e 6
2.1 DaAta TYPES .o ee et 6
2.2 NUMENC OPEraNdSttt e e e e e 6
2.8 RegiSter St .. 8
2.3. 1 Data Registers 8
2.3.2TagWord 8

2.3.83 StatusS WOrd ... 9

2.3.4 Instruction and Data Pointers i 12

2.3.5 C0Ntrol WOrd ... 14

2.4 Interrupt DesCripliono e 14
25 Exception Handling o 15
2.6 Initialization e 15
2.7 8087 and 80287 Compatibility i 16
2.7.1 General DIfferenCest 16
2.7 2 EXCOPUIONS ... 17

3.0 HARDWARE INTERFACE e 17
3.1.Signal DeSCHPLONt 17
3.1.1 Intel386™ DX CPU Clock 2 (CPUCLK2)ooiii e 20

3.1.2 Intel387™ DX MCP Clock 2 (NUMCLK2) ... 20

3.1.3 Intel387™ DX MCP Clocking Mode (CKM) 20

3.1.4 System Reset (RESETIN)t 21

3.1.5 Processor Extension Request (PEREQ) ...t 21

3. 1.6 Busy Status (BUSY #) ..o 21

3.1.7 Error Status (ERROR#) ..ot 21

3.1.8 Data Pins (D31=D0)ttt e 21

3.1.9 Write/Read Bus Cycle (W/R#) ..o e e 21
3.1.10 Address Strobe (ADS#)t 21
3.1.11 Bus Ready INnput (READY #) ...t e et 22
3.1.12 Ready Output (READYO#) ...t 22
3.1.13 Status Enable (STEN) ... 22
BA14MCP Select #1 (NPST#) o 22

31 A5 MCP Select #2 (NPS2) 22
3.1.16 Command (CMDO#) ... e 22

CONTENTS PAGE

3.2 Processor Architecture 22
B.2.1 BUS CONIrOl LOGIC . .. o .ottt et e e e e e 23
3.2.2 Data Interface and Control Unit i 23
3.23 Floating Point Unit 23
3.3 System Configuration 23
3.3.1BUSCyYCIe TraCKingottt e 24
B.3.2MCP AdAresSiNgo vvt et 24
B.3.3FUNCHON SElECto 24
3.3.4 CPU/MCP Synchronization ... 24
3.3.5 Synchronous or Asynchronous Modes it 25
3.3.6 Automatic Bus Cycle Termination i, 25
B4 BUS OPEration 25
3.4.1 Nonpipelined Bus CyCles ...t e 26
B4 A WIte CyCle ... 26
3.41.2Read CyCle ... 26
3.4.2 Pipelined BUS CYCIESt e 27
3.4.3 Bus Cycles of Mixed TYpet 28
3.4.4 BUSY # and PEREQ Timing Relationship ... 28
4.0 ELECTRICAL DAT A .. e 30
4.1 Absolute Maximum Ratingso i e 30
4.2 DC CharaCteriStiCsueuitti ittt e 30
4.3 AC CharacteristiCsot 31
5.0 Intel387™ DX MCP EXTENSIONS TO THE Intel386™ DX CPU INSTRUCTION
SE T 36
APPENDIX A—COMPATIBILITY BETWEEN THE 80287 MCP AND THE 8087 A1
FIGURES
Figure 0.1 Intel387T™ DX Math Coprocessor Block Diagram ..., 1
Figure 1.1 ISntctaI386TM DX Microprocessor and Intel387™ DX Math Coprocessor Register
Ol L e 5
Figure 2.1 Intel387TM DX MCP TagWord ..ot 8
Figure 2.2 MCP Status Wordo e 9
Figure 2.3 Protected Mode Intel387™ DX MCP Instruction and Data Pointer Image in
Memory, 32-Bit Format 12
Figure 2.4 Real Mode Intel387™ DX MCP Instruction and Data Pointer Image in Memory, 32-
Bit Format ... 13
Figure 2.5 Protected Mode Intel387™ DX MCP Instruction and Data Pointer Image in
Memory, 16-Bit Format 13
Figure 2.6 Real Mode Intel387™ DX MCP Instruction and Data Pointer Image in Memory, 16-
Bit Format 13
Figure 2.7 Intel387T™M DX MCP Control Word e 14
Figure 3.1 Intel387™ DX MCP Pin Configuration i ... 19

CONTENTS PAGE
FIGURES (Continued)

Figure 3.2 Asynchronous Operationottt 20
Figure 3.3 Intel386™ DX Microprocessor and Intel387™ DX MCP Coprocessor System

Configuration 23
Figure 3.4 Bus State Diagramot 25
Figure 3.5 Nonpipelined Read and Write Cycles ..., 27
Figure 3.6 Fastest Transitions to and from Pipelined Cycles, 28
Figure 3.7 Pipelined Cycles with Wait States i, 29
Figure 3.8 STEN, BUSY # and PEREQ Timing Relationship, 29
Figure 4.0a Typical Output Valid Delay vs Load Capacitance at Max Operating

Temperature 32
Figure 4.0b Typical Output Rise Time vs Load Capacitance at Max Operating

Temperature ... e 32
Figure 4.1 CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output A.C.

SPECIfiCAtiONS ... 33
Figure 4.2 Output Signalsot 33
Figure 4.3 Inputand I/0 Signalst 34
Figure 4.4 RESET Signal 34
Figure 4.5 Float from STEN e 34
Figure 4.6 Other Parameters 35
TABLES
Table 2.1 Intel387™ DX MCP Data Type RepresentationinMemory 7
Table 2.2 Condition Code Interpretation 10
Table 2.3 Condition Code Interpretation after FPREM and FPREM1 Instructions 11
Table 2.4 Condition Code Resulting from Comparisonc.ooiiiiiiiiiiiiiinean.. 11
Table 2.5 Condition Code Defining Operand Classoiiiuiiniiiiniiiiinenin.. 11
Table 2.6 Intel386™ DX Microprocessor Interrupt Vectors Reserved for MCP 15
Table 2.7 EXCEPLiONS e 16
Table 3.1 Intel387T™ DX MCP Pin SUMMANYottt 18
Table 3.2 Intel387™ DX MCP Pin Cross-Reference ..., 18
Table 3.3 Output Pin Status after Reset i 21
Table 3.4 Bus Cycles Definition o 24
Table 4.1 DC Specificationst 30
Table 4.2a Combinations of Bus Interface and Execution Speeds 31
Table 4.2b Timing Requirements of the Execution Unit 31
Table 4.2c Timing Requirements of the Bus Interface Unit 31
Table 4.3 Other Parameterst 35

intal.

Intel387™ DX MATH COPROCESSOR

Intel386™ DX Microprocessor Registers
GENERAL REGISTERS SEGMENT REGISTERS
31 15 0 15 0
EAX AX GS
. | A4 | AL ss
EBX BX DS
| BH | BL :
' ES
ECX CX =
| cH | cL FS
EDX DX Gas
| oH | DL
ESI | Sl 31 . .0
! ! EIP
EDI DI f f f
| _ EFLAGS
EBP | BP
ESP | SP

Intel387™ DX MCP Data Registers
Tag
Field
64 63 0 10

Exponent

79 78
RO | Sign
R1
R2
R3
R4
R5
R6
R7

Significand

15 0 47 0
|Instruction Pointer (in i386™ DX CPU)
| Data Pointer (in i386™ DX CPU)

Control Register|

Status Register
Tag Word

Figure 1.1. Intel386™ DX Microprocessor and Intel387™ DX Math Coprocessor Register Set

1.0 FUNCTIONAL DESCRIPTION

The Intel387™ DX Math Coprocessor provides
arithmetic instructions for a variety of numeric data
types in Intel386™ DX Microprocessor systems. It
also executes numerous built-in transcendental
functions (e.g. tangent, sine, cosine, and log func-
tions). The Intel387 DX MCP effectively extends the
register and instruction set of a Intel386 DX Micro-
processor system for existing data types and adds
several new data types as well. Figure 1.1 shows the
model of registers visible to programs. Essentially,
the Intel387 DX MCP can be treated as an additional
resource or an extension to the Intel386 DX Micro-
processor. The Intel386 DX Microprocessor togeth-
er with a Intel387 DX MCP can be used as a single
unified system.

The Intel387 DX MCP works the same whether the
Intel386 DX Microprocessor is executing in real-ad-
dress mode, protected mode, or virtual-8086 mode.
All memory access is handled by the Intel386 DX
Microprocessor; the Intel387 DX MCP merely oper-
ates on instructions and values passed to it by the
Intel386 DX Microprocessor. Therefore, the Intel387
DX MCP is not sensitive to the processing mode of
the Intel386 DX Microprocessor.

In real-address mode and virtual-8086 mode, the In-
tel386 DX Microprocessor and Intel387 DX MCP are
completely upward compatible with software for
8086/8087, 80286/80287 real-address mode, and
Intel386 DX Microprocessor and 80287 Coproces-
sor real-address mode systems.

In protected mode, the Intel386 DX Microprocessor
and Intel387 DX MCP are completely upward com-
patible with software for 80286/80287 protected
mode, and Intel386 DX Microprocessor and 80287
Coprocessor protected mode systems.

The only differences of operation that may appear
when 8086/8087 programs are ported to a protect-
ed-mode Intel386 DX Microprocessor and Intel387
DX MCP system (not using virtual-8086 mode), is in
the format of operands for the administrative instruc-
tions FLDENV, FSTENV, FRSTOR and FSAVE.
These instructions are normally used only by excep-
tion handlers and operating systems, not by applica-
tions programs.

The Intel387 DX MCP contains three functional units
that can operate in parallel to increase system per-
formance. The Intel386 DX Microprocessor can be
transferring commands and data to the MCP bus
control logic for the next instruction while the MCP
floating-point unit is performing the current numeric
instruction.

Intel387™ DX MATH COPROCESSOR

2.0 PROGRAMMING INTERFACE

The MCP adds to the Intel386 DX Microprocessor
system additional data types, registers, instructions,
and interrupts specifically designed to facilitate high-
speed numerics processing. To use the MCP re-
quires no special programming tools, because all
new instructions and data types are directly support-
ed by the Intel386 DX CPU assembler and compilers
for high-level languages. All 8086/8088 develop-
ment tools that support the 8087 can also be used
to develop software for the Intel386 DX Microproc-
essor and Intel387 DX Math Coprocessor in real-ad-
dress mode or virtual-8086 mode. All 80286 devel-
opment tools that support the 80287 can also be
used to develop software for the Intel386 DX Micro-
processor and Intel387 DX Math Coprocessor.

All communication between the Intel386 DX Micro-
processor and the MCP is transparent to applica-
tions software. The CPU automatically controls the
MCP whenever a numerics instruction is executed.
All physical memory and virtual memory of the CPU
are available for storage of the instructions and op-
erands of programs that use the MCP. All memory
addressing modes, including use of displacement,
base register, index register, and scaling, are avail-
able for addressing numerics operands.

Section 6 at the end of this data sheet lists by class
the instructions that the MCP adds to the instruction
set of the Intel386 DX Microprocessor system.

intal.

Table 2.1 lists the seven data types that the Intel387
DX MCP supports and presents the format for each
type. Operands are stored in memory with the least
significant digit at the lowest memory address. Pro-
grams retrieve these values by generating the low-
est address. For maximum system performance, all
operands should start at physical-memory address-
es evenly divisible by four (doubleword boundaries);
operands may begin at any other addresses, but will
require extra memory cycles to access the entire op-
erand.

2.1 Data Types

Internally, the Intel387 DX MCP holds all numbers in
the extended-precision real format. Instructions that
load operands from memory automatically convert
operands represented in memory as 16-, 32-, or 64-
bit integers, 32- or 64-bit floating-point numbers, or
18-digit packed BCD numbers into extended-preci-
sion real format. Instructions that store operands in
memory perform the inverse type conversion.

2.2 Numeric Operands

A typical MCP instruction accepts one or two oper-
ands and produces a single result. In two-operand
instructions, one operand is the contents of an MCP
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example FSQRT always takes the square root of
the number in the top stack element.

intal.

Table 2.1. Intel387™ DX MCP Data Type Representation in Memory

Intel387™ DX MATH COPROCESSOR

Most Significant Byte = Highest Addressed Byte
Data Range Precision
Formats 7 o|l7 o|7 0|7 o7 o|7 o]7 o]7 o|7 o7 o
Word Integer | +104 16 Bits : COMPLEMENT)
15 0
Short Integer | +10° 32 Bits J CompremenT)
31 0
Long Integer | 1018 64 Bits Ig(\;vh?PfEMENY»
63 0
MAGNITUDE J
Packed BCD |+10+18 18 Digits |° I""‘x"‘un"‘slf’uﬂ‘n“'ll“”|"W|°9."Bl"‘rn“‘bl"‘vl"‘.“»ldzld‘L°
79 72 0
Single Precision | +10%38 24 Bits b5| evbrent I SIGNIFICAND
31 28 N 0
Double Precision [+10¥%08| 53 Bits [s| Sttt | SIGNIFICAND]
63 s2%_ e 0
Extended +4932 i
Procision 10 64 Bits |s e SENT h‘ SIGNIFICAND]
7o 64 63 [
240448-2
NOTES:
(1) S = Sign bit (0 = positive, 1 = negative)
(2) d, = Decimal digit (two per byte)
(3) X = Bits have no significance; Intel387™ DX MCP ignores when loading, zeros when storing
(4)A = Position of implicit binary point
(5) | = Integer bit of significand; stored in temporary real, implicit in single and double precision
(6) Exponent Bias (normalized values):
Single: 127 (7FH)
Double: 1023 (3FFH)
Extended Real: 16383 (3FFFH)
(7) Packed BCD: (—1)S (D17...Dg)
(8) Real: (—1)S (2E-BIAS) (Fq Fy...)

Intel387™ DX MATH COPROCESSOR

15

TAG (7) | TAG(6) | TAG (5)

TAG (4)

TAG(3) | TAG(2) | TAG() | TAG () |

NOTE:

field refers to logical top of stack.

11 Empty

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

TAG VALUES:
00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats

Figure 2.1. Intel387™ DX MCP Tag Word

2.3 Register Set

Figure 1.1 shows the Intel387 DX MCP register set.
When an MCP is present in a system, programmers
may use these registers in addition to the registers
normally available on the Intel386 DX CPU.

2.3.1 DATA REGISTERS

Intel387 DX MCP computations use the MCP’s data
registers. These eight 80-bit registers provide the
equivalent capacity of twenty 32-bit registers. Each
of the eight data registers in the MCP is 80 bits wide
and is divided into ‘“fields” corresponding to the
MCPs extended-precision real data type.

The Intel387 DX MCP register set can be accessed
either as a stack, with instructions operating on the
top one or two stack elements, or as a fixed register
set, with instructions operating on explicitly designat-
ed registers. The TOP field in the status word identi-
fies the current top-of-stack register. A “push’ oper-
ation decrements TOP by one and loads a value into
the new top register. A “pop” operation stores the
value from the current top register and then incre-

ments TOP by one. Like the Intel386 DX Microproc-
essor stacks in memory, the MCP register stack
grows “down” toward lower-addressed registers.

Instructions may address the data registers either
implicitly or explicitly. Many instructions operate on
the register at the TOP of the stack. These instruc-
tions implicitly address the register at which TOP
points. Other instructions allow the programmer to
explicitly specify which register to user. This explicit
register addressing is also relative to TOP.

2.3.2 TAG WORD

The tag word marks the content of each numeric
data register, as Figure 2.1 shows. Each two-bit tag
represents one of the eight numerics registers. The
principal function of the tag word is to optimize the
MCPs performance and stack handling by making it
possible to distinguish between empty and nonemp-
ty register locations. It also enables exception han-
dlers to check the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

Intel387™ DX MATH COPROCESSOR

MCP BUSY

TOP OF STACK POINTER

CONDITION CODE

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS:
PRECISION

UNDERFLOW
OVERFLOW

ZERO DIVIDE

DENORMALIZED OPERAND

INVALID OPERATION

TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack
.

111 = Register 7 is Top of Stack

“Exception Handling”

ES is set if any unmasked exception bit is set; cleared otherwise.
See Table 2.2 for interpretation of condition code.

For definitions of exceptions, refer to the section entitled

240448-3

Figure 2.2. MCP Status Word

2.3.3 STATUS WORD

The 16-bit status word (in the status register) shown
in Figure 2.2 reflects the overall state of the MCP. It
may be read and inspected by CPU code.

Bit 15, the B-bit (busy bit) is included for 8087 com-
patibility only. It reflects the contents of the ES bit
(bit 7 of the status word), not the status of the
BUSY # output of the Intel387 DX MCP.

Bits 13—11 (TOP) point to the Intel387 DX MCP reg-
ister that is the current top-of-stack.

The four numeric condition code bits (C3-Cp) are
similar to the flags in a CPU; instructions that per-
form arithmetic operations update these bits to re-
flect the outcome. The effects of these instructions
on the condition code are summarized in Tables 2.2
through 2.5.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR# signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C4) distinguishes between stack
overflow (C1 = 1) and underflow (Cq = 0).

Figure 2.2 shows the six exception flags in bits 5-0
of the status word. Bits 5-0 are set to indicate that
the MCP has detected an exception while executing
an instruction. A later section entitled “Exception
Handling” explains how they are set and used.

Note that when a new value is loaded into the status
word by the FLDENV or FRSTOR instruction, the
value of ES (bit 7) and its reflection in the B-bit (bit
15) are not derived from the values loaded from
memory but rather are dependent upon the values of
the exception flags (bits 5-0) in the status word and
their corresponding masks in the control word. If ES
is set in such a case, the ERROR# output of the
MCP is activated immediately.

Intel387™ DX MATH COPROCESSOR

Table 2.2. Condition Code Interpretation

intal.

Instruction CO0 (S) C3(2) C1(A) C2(C)
FPREM, FPREM1 Three least significant bits Reduction
(see Table 2.3) of quotient 0 = complete
Q2 Qo Qi 1 = incomplete
or O/U#
FCOM, FCOMP,
FCOMPP, FTST, Result of comparison Zero Operand is not
FUCOM, FUCOMP, (see Table 2.4) or O/U# comparable
FUCOMPP, FICOM, (Table 2.4)
FICOMP
FXAM Operand class Sign Operand class
(see Table 2.5) orO/U# (Table 2.5)
FCHS, FABS, FXCH,
FINCSTP, FDECSTP, Zero
Constant loads, UNDEFINED UNDEFINED
FXTRACT, FLD, or O/U#
FILD, FBLD,
FSTP (ext real)
FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL, Roundup
FDIV, FDIVR, UNDEFINED UNDEFINED
FSUB, FSUBR, or O/U#
FSCALE, FSQRT,
FPATAN, F2XM1,
FYL2X, FYL2XP1
FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1

FLDENV, FRSTOR

Each bit loaded from memory

FLDCW, FSTENYV,

Reduction

Roundup

FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE
O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit

distinguishes between stack overflow (C1 = 1) and underflow (C1 = 0).

If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is

complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

When the PE bit of the status word is set, this bit indicates whether the last rounding in the

10

intal.

Intel387™ DX MATH COPROCESSOR

Table 2.3. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code

Interpretation after FPREM and FPREM1

C2 C3 C1 Co
Incomplete Reduction:
1 X X X further interation required
for complete reduction
Q1 Qo Q2 Q MOD8

0 0 0 0
? (1) 8 ; Complete Reduction:

0 1 1 0 3 CO0, C3, C1 contain three least
0 0 1 4 significant bits of quotient
0 1 1 5
1 0 1 6
1 1 1 7

Table 2.4. Condition Code Resulting from Comparison

Order C3 C2 Co
TOP > Operand 0 0 0
TOP < Operand 0 0 1
TOP = Operand 1 0 0
Unordered 1 1 1

Table 2.5. Condition Code Defining Operand Class

C3 C2 C1 Cco Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN

0 0 1 0 — Unsupported
0 0 1 1 — NaN

0 1 0 0 + Normal

0 1 0 1 =+ Infinity

0 1 1 0 — Normal

0 1 1 1 — Infinity

1 0 0 0 +0

1 0 0 1 + Empty

1 0 1 0 -0

1 0 1 1 — Empty

1 1 0 0 + Denormal

1 1 1 0 — Denormal

11

Intel387™ DX MATH COPROCESSOR

2.3.4 INSTRUCTION AND DATA POINTERS

Because the MCP operates in parallel with the CPU,
any errors detected by the MCP may be reported
after the CPU has executed the ESC instruction
which caused it. To allow identification of the failing
numeric instruction, the Intel386 DX Microprocessor
and Intel387 DX Math CoProcessor contains two
pointer registers that supply the address of the fail-
ing numeric instruction and the address of its numer-
ic memory operand (if appropriate).

The instruction and data pointers are provided for
user-written error handlers. These registers are ac-
tually located in the Intel386 DX CPU, but appear to
be located in the MCP because they are accessed
by the ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR. (In the 8086/8087 and 80286/80287,
these registers are located in the MCP.) Whenever

intal.

the Intel386 DX CPU decodes a new ESC instruc-
tion, it saves the address of the instruction (including
any prefixes that may be present), the address of
the operand (if present), and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the Intel386 DX Microprocessor (protected mode or
real-address mode) and depending on the operand-
size attribute in effect (32-bit operand or 16-bit oper-
and). When the Intel386 DX Microprocessor is in vir-
tual-8086 mode, the real-address mode formats are
used. (See Figures 2.3 through 2.6.) The ESC in-
structions FLDENV, FSTENV, FSAVE, and FRSTOR
are used to transfer these values between the In-
tel386 DX Microprocessor registers and memory.
Note that the value of the data pointer is undefined if
the prior ESC instruction did not have a memory op-
erand.

32-BIT PROTECTED MODE FORMAT

31 23 7 0
RESE:RVED CONTRo:L WORD 0
RESE:RVED STATus: WORD 4
RESE:RVED TAG \%VORD 8
| IP OFFSET . c
00000 OPCODE 19.0 cs SEL:ECTOR 10
. DATA OPERAND OFFSET . 14
RESE:RVED OPERAND :SELECTOR 18
: :

Figure 2.3. Protected Mode Intel387™ DX MCP Instruction and
Data Pointer Image in Memory, 32-Bit Format

12

Intel387™ DX MATH COPROCESSOR

32-BIT REAL-ADDRESS MODE FORMAT

31 I23 15 I7 0
RESE:RVED CONTRO:L WORD 0
RESE;RVED STATUS; WORD 4
RESE:RVED TAG V:VORD 8
RESE:RVED INSTRUCTION:POINTER 15..0 C
0000 INSTRU;CTION POINTER 31..16 0 OPC;ODE 10..0 10
RESE;RVED OPERAND Pé)INTER 15..0 14
0000 OPER:ANDPOINTER31..16 0000 ' 00000000 18

Figure 2.4. Real Mode Intel387™ DX MCP Instruction and Data Pointer Image in Memory, 32-Bit Format

16-BIT PROTECTED MODE FORMAT

15 7
|

0

CONTROL WORD
|

STATUS WORD
|

TAG WORD
|

IP OFFSET
|

CS SELECTOR
|

OPERAND OFFSET
|

OPERAND SELECTOR
|

16-BIT REAL-ADDRESS MODE AND

VIRTUAL-8086 MODE FORMAT

15 I7 0
T

CONTROIL WORD 0
STATUSI WORD 2
TAG VIVORD 4
INSTRUCTIONIPOINTER 15..0 6
IP19.16 |0 CI)PCODE10..0 8
OPERAND PIOINTER 15..0 A
DP19.160000|00000000C

Figure 2.5. Protected Mode Intel387™ DX MCP

Instruction and Data Pointer
Image in Memory, 16-Bit Format

Figure 2.6. Real Mode Intel387™ DX MCP

Instruction and Data Pointer
Image in Memory, 16-Bit Format

13

Intel387™ DX MATH COPROCESSOR

RESERVED

RESERVED*

ROUNDING CONTROL

PRECISION CONTROL

o

RESERVED

EXCEPTION MASKS:

PRECISION
UNDERFLOW

* ""0" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

OVERFLOW
ZERO DIVIDE

DENORMALIZED OPERAND

INVALID OPERATION

Precision Control
00—24 bits (single precision)
01—(reserved)
10—58 bits (double precision)
11—64 bits (extended precision)

240448-4
Rounding Control
00—Round to nearest or even
01—Round down (toward — o)
10—Round up (toward + <)

11—Chop (truncate toward zero)

Figure 2.7. Intel387™ DX MCP Control Word

2.3.5 CONTROL WORD

The MCP provides several processing options that
are selected by loading a control word from memory
into the control register. Figure 2.7 shows the format
and encoding of fields in the control word.

The low-order byte of this control word configures
the MCP error and exception masking. Bits 5-0 of
the control word contain individual masks for each of
the six exceptions that the MCP recognizes.

The high-order byte of the control word configures
the MCP operating mode, including precision and
rounding.

® Bit 12 no longer defines infinity control and is a
reserved bit. Only affine closure is supported for
infinity arithmetic. The bit is initialized to zero after
RESET or FINIT and is changeable upon loading
the CW. Programs must ignore this bit.

e The rounding control (RC) bits (bits 11-10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control

14

affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS), and all transcendental instructions.

® The precision control (PC) bits (bits 9-8) can be
used to set the MCP internal operating precision
of the significand at less than the default of 64
bits (extended precision). This can be useful in
providing compatibility with early generation arith-
metic processors of smaller precision. PC affects
only the instructions ADD, SUB, DIV, MUL, and
SQRT. For all other instructions, either the preci-
sion is determined by the opcode or extended
precision is used.

2.4 Interrupt Description

Several interrupts of the Intel386 DX CPU are used
to report exceptional conditions while executing nu-
meric programs in either real or protected mode. Ta-
ble 2.6 shows these interrupts and their causes.

intal.

Intel387™ DX MATH COPROCESSOR

Table 2.6. Intel386™ DX Microprocessor Interrupt Vectors Reserved for MCP

Interrupt
Number

Cause of Interrupt

7

An ESC instruction was encountered when EM or TS of the Intel386™ DX CPU control
register zero (CRO) was set. EM = 1 indicates that software emulation of the instruction is
required. When TS is set, either an ESC or WAIT instruction causes interrupt 7. This
indicates that the current MCP context may not belong to the current task.

An operand of a coprocessor instruction wrapped around an addressing limit (OFFFFH for
small segments, OFFFFFFFFH for big segments, zero for expand-down segments) and
spanned inaccessible addresses(1). The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does
not return reliable addresses. As with the 80286/80287, the segment overrun exception
should be handled by executing an FNINIT instruction (i.e. an FINIT without a preceding
WAIT). The return address on the stack does not necessarily point to the failing instruction
nor to the following instruction. The interrupt can be avoided by never allowing numeric
data to start within 108 bytes of the end of a segment.

13

The first word or doubleword of a numeric operand is not entirely within the limit of its
segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The Intel387™ DX MCP
has not executed this instruction; the instruction pointer and data pointer register refer to a
previous, correctly executed instruction.

16

The previous numerics instruction caused an unmasked exception. The address of the
faulty instruction and the address of its operand are stored in the instruction pointer and
data pointer registers. Only ESC and WAIT instructions can cause this interrupt. The
Intel386™ DX CPU return address pushed onto the stack of the exception handler points
to a WAIT or ESC instruction (including prefixes). This instruction can be restarted after
clearing the exception condition in the MCP. FNINIT, FNCLEX, FNSTSW, FNSTENV, and
FNSAVE cannot cause this interrupt.

1. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is near the largest valid
address in the segment. Because of the wrap-around, the beginning and ending addresses of such an operand will be at opposite ends of the
segment. There are two ways that such an operand may also span inaccessible addresses: 1) if the segment limit is not equal to the addressing
limit (e.g. addressing limit is FFFFH and segment limit is FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte
operand that starts at valid offset FFFC will span addresses FFFC-FFFF and 0000-0003; however addresses FFFE and FFFF are not valid,
because they exceed the limit); 2) if the operand begins and ends in present and accessible pages but intermediate bytes of the operand fall in a

not-present page or a page to which the procedure does not have access rights.

2.5 Exception Handling

The Intel387 DX MCP detects six different exception
conditions that can occur during instruction execu-
tion. Table 2.7 lists the exception conditions in order
of precedence, showing for each the cause and the
default action taken by the MCP if the exception is
masked by its corresponding mask bit in the control
word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR# signal. When the CPU at-
tempts to execute another ESC instruction or WAIT,
exception 7 occurs. The exception condition must
be resolved via an interrupt service routine. The In-
tel386 DX Microprocessor saves the address of the
floating-point instruction that caused the excep-

tion and the address of any memory operand re-
quired by that instruction.

2.6 Initialization

Intel387 DX MCP initialization software must exe-
cute an FNINIT instruction (i.e. an FINIT without a
preceding WAIT) to clear ERROR #. After a hardware
RESET, the ERROR # output is asserted to indicate
that a Intel387 DX MCP is present. To accomplish
this, the IE and ES bits of the status word are set,
and the IM bit in the control word is reset. After
FNINIT, the status word and the control word have
the same values as in an 80287 after RESET.

15

Intel387™ DX MATH COPROCESSOR

2.7 8087 and 80287 Compatibility

This section summarizes the differences between
the Intel387 DX MCP and the 80287. Any migration
from the 8087 directly to the Intel387 DX MCP must
also take into account the differences between the
8087 and the 80287 as listed in Appendix A.

Many changes have been designed into the Intel387
DX MCP to directly support the IEEE standard in
hardware. These changes result in increased per-
formance by eliminating the need for software that
supports the standard.

2.7.1 GENERAL DIFFERENCES

The Intel387 DX MCP supports only affine closure
for infinity arithmetic, not projective closure. Bit 12 of
the Control Word (CW) no longer defines infinity
control. It is a reserved bit; but it is initialized to zero
after RESET or FINIT and is changeable upon load-
ing the CW. Programs must ignore this bit.

intal.

Operands for FSCALE and FPATAN are no longer
restricted in range (except for + <0); F2XM1 and
FPTAN accept a wider range of operands.

The results of transcendental operations may be
slightly different from those computed by 80287.

In the case of FPTAN, the Intel387 DX MCP supplies
a true tangent result in ST(1), and (always) a floating
point 1 in ST.

Rounding control is in effect for FLD constant.

Software cannot change entries of the tag word to
values (other than empty) that do not reflect the ac-
tual register contents.

After reset, FINIT, and incomplete FPREM, the In-
tel387 DX MCP resets to zero the condition code
bits C3-Cy of the status word.

In conformance with the |IEEE standard, the Intel387
DX MCP does not support the special data formats:
pseudozero, pseudo-NaN, pseudoinfinity, and un-
normal.

Table 2.7. Exceptions

Exception Cause Default Action
P (if exception is masked)

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer

Operation indeterminate form (0* o2, 0/0, (+) + (— <), etc.), or indefinite, or BCD indefinite
stack overflow/underflow (SF is also set).

Denormalized | At least one of the operands is denormalized, i.e. it has Normal processing

Operand the smallest exponent but a nonzero significand. continues

Zero Divisor The divisor is zero while the dividend is a noninfinite, Resultis o
nonzero number.

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value
format. or

Underflow The true result is nonzero but too small to be Result is denormalized or
represented in the specified format, and, if underflow zero
exception is masked, denormalization causes loss of
accuracy.

Inexact The true result is not exactly representable in the Normal processing

Result specified format (e.g. 1/3); the result is rounded continues

(Precision) according to the rounding mode.

16

intal.

2.7.2 EXCEPTIONS

A number of differences exist due to changes in the
IEEE standard and to functional improvements to
the architecture of the Intel387 DX MCP:

1. When the overflow or underflow exception is
masked, the Intel387 DX MCP differs from the
80287 in rounding when overflow or underflow
occurs. The Intel387 DX MCP produces results
that are consistent with the rounding mode.

2. When the underflow exception is masked, the
Intel387 DX MCP sets its underflow flag only if
there is also a loss of accuracy during denormali-
zation.

3. Fewer invalid-operation exceptions due to de-
normal operands, because the instructions
FSQRT, FDIV, FPREM, and conversions to BCD
or to integer normalize denormal operands be-
fore proceeding.

4. The FSQRT, FBSTP, and FPREM instructions
may cause underflow, because they support de-
normal operands.

5. The denormal exception can occur during the
transcendental instructions and the FXTRACT
instruction.

6. The denormal exception no longer takes prece-
dence over all other exceptions.

7. When the denormal exception is masked, the In-
tel387 DX MCP automatically normalizes denor-
mal operands. The 8087/80287 performs unnor-
mal arithmetic, which might produce an unnor-
mal result.

8. When the operand is zero, the FXTRACT in-
struction reports a zero-divide exception and
leaves — o in ST(1).

9. The status word has a new bit (SF) that signals
when invalid-operation exceptions are due to
stack underflow or overflow.

10. FLD extended precision no longer reports denor-
mal exceptions, because the instruction is not
numeric.

11. FLD single/double precision when the operand
is denormal converts the number to extended
precision and signals the denormalized operand
exception. When loading a signaling NaN, FLD
single/double precision signals an invalid-oper-
and exception.

12. The Intel387 DX MCP only generates quiet
NaNs (as on the 80287); however, the Intel387
DX MCP distinguishes between quiet NaNs and
signaling NaNs. Signaling NaNs trigger excep-
tions when they are used as operands; quiet
NaNs do not (except for FCOM, FIST, and
FBSTP which also raise |IE for quiet NaNs).

13. When stack overflow occurs during FPTAN and
overflow is masked, both ST(0) and ST(1) con-
tain quiet NaNs. The 80287/8087 leaves the
original operand in ST(1) intact.

Intel387™ DX MATH COPROCESSOR

14. When the scaling factor is + o, the FSCALE
(ST(0), ST(1)) instruction behaves as follows
(ST(0) and ST(1) contain the scaled and scaling
operands respectively):

® FSCALE(0,) generates the invalid operation
exception.

e FSCALE(finite, — o) generates zero with the
same sign as the scaled operand.

e FSCALE(finite, + o©) generates < with the
same sign as the scaled operand.

The 8087/80287 returns zero in the first case
and raises the invalid-operation exception in the
other cases.

15. The Intel387 DX MCP returns signed infinity/
zero as the unmasked response to massive
overflow/underflow. The 8087 and 80287 sup-
port a limited range for the scaling factor; within
this range either massive overflow/underflow do
not occur or undefined results are produced.

3.0 HARDWARE INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

3.1 Signal Description

In the following signal descriptions, the Intel387 DX
Math Coprocessor pins are grouped by function as
follows:

1. Execution control—CPUCLK2, NUMCLK2, CKM,
RESETIN

2. MCP handshake—PEREQ, BUSY #, ERROR #

3. Bus interface pins—D31-D0, W/R#, ADS#,
READY #, READYO #

4. Chip/Port Select—STEN,
CMDO #

5. Power supplies—V¢g, Vss

NPS1#, NPS2,

Table 3.1 lists every pin by its identifier, gives a brief
description of its function, and lists some of its char-
acteristics. All output signals are tristate; they leave
floating state only when STEN is active. The output
buffers of the bidirectional data pins D31-DO0 are
also tristate; they leave floating state only in read
cycles when the MCP is selected (i.e. when STEN,
NPS1#, and NPS2 are all active).

Figure 3.1 and Table 3.2 together show the location
of every pin in the pin grid array.

17

Intel387™ DX MATH COPROCESSOR

Table 3.1. Intel387™ DX MCP Pin Summary

intal.

Pin Function Active Input/ Referenced
Name State Output To
CPUCLK2 Intel386™ DX CPU CLocK 2 |
NUMCLK2 Intel387™ DX MCP CLocK 2 |
CKM Intel387™ DX MCP CLocKing Mode |
RESETIN System reset High | CPUCLK2
PEREQ Processor Extension High o} CPUCLK2/STEN
REQuest
BUSY # Busy status Low (0] CPUCLK2/STEN
ERROR # Error status Low (0] NUMCLK2/STEN
D31-DO Data pins High 1/0 CPUCLK2
W/R# Write/Read bus cycle Hi/Lo | CPUCLK2
ADS # ADdress Strobe Low | CPUCLK2
READY # Bus ready input Low | CPUCLK2
READYO # Ready output Low (0] CPUCLK2/STEN
STEN STatus ENable High | CPUCLK2
NPS1 # MCP select #1 Low | CPUCLK2
NPS2 MCP select #2 High | CPUCLK2
CMDO # CoMmanD Low | CPUCLK2
Vco |
Vss |
NOTE:
STEN is referenced to only when getting the output pins into or out of tristate mode.
Table 3.2. Intel387™ DX MCP Pin Cross-Reference
ADS # — K7 D18 — A8 STEN — L4
BUSY # — K2 D19 — B9 W/R# — K4
CKM — I D20 — B10
CPUCLK24 — K10 D21 — A10 Vce — A6, A9, B4,
CMDO # — L8 D22 — Bt E1, F1, F10,
DO — H2 D23 — €10 J2, K5,
D1 — HA1 D24 — D10 L7
D2 — G2 D25 — D11
D3 — G1 D26 — E10 Vss — B2,B7,C11,
D4 — D2 D27 — E11 E2, F2, F11,
D5 — D1 D28 — G10 J1,J10, L5
D6 — C2 D29 — Gn
D7 — C1 D30 — H10 NO CONNECT — K9
D8 — B1 D31 — HN TIE HIGH — K3, L9*
D9 — A2 ERROR # — L2
D10 — B3 NPS1 # — L6
D11 — A3 NPS2 — K6
D12 — A4 NUMCLK2 — K1
D13 — B5 PEREQ — K1
D14 — A5 READY # — K8
D15 — B6 READYO# — L3
D16 — A7 RESETIN — L10
D17 — B8

*Tie high pins may either be tied high with a pullup resistor or connected to Vgc.

18

Intel387™ DX MATH COPROCESSOR

A B c D E F G H J K L
Y] D7 D5 Ve o Veo D3 D1 Vgg PEREQ
1 *
D9 Vgg D6 D4 Vgs Vsg D2 DO Ve BUSY# ERROR#
2
D11 D10 TIE HIGH READYQ#
3 L L] . L]
D12 Vg W/R# STEN
4
D14 D13 Ve Vss
S
PIN SIDE VIEW
Vee D15 NPS2 NPS1#
6 . (BOTTOM) o e
D16 Vgg ADS# Vgo
7
D18 D17 READY# CMDO#
8 . L] . .
Voo D19 N/C TIE HIGH
9
D21 D20 D23 D24 D26 Vee D28 D30 Vgg CPUCLK2 RESETIN
10
D22 Vgg D25 D27 Vgg D29 D31 CKM NUMCLK2
1 1 L] . .
240448-5
*Pin 1
L K J H G F E D C B A
PEREQ Vgg D1 03 Vee Veo D5 D7 D8
1 *
ERROR# BUSY# Vo 00 D2 Vgg Vgg D4 D6 Vg D9
2 L] . . . L] . . L] . L] .
READYO# TIE HIGH p1o D11
3
STEN W/R# Voo D12
4 . . o .
Yss Vee D13 D14
5 L] . L] .
NPS1# NPS2 TOP VIEW D15 Vo
6 L L] . L]
Voo ADS# Vss D16
7 . . o .
CMDO# READY# D17 D18
8 L] . L] .
TIE HIGH N/C D19 Ve
9 . L] L L]
RESETIN CPUCLK2 \/SS D30 D28 VCC D26 D24 D23 D20 D21
10 o
NUMCLK2 CKM D31 D29 Vgg D27 D25 Vgg D22
1 1 L] . . L] . . L] . .
240448-6

*Pin 1

Figure 3.1. Intel387™ DX MCP Pin Configuration

19

Intel387™ DX MATH COPROCESSOR

3.1.1 Intel386™ DX CPU CLOCK 2 (CPUCLK2)

This input uses the Intel386 DX CPU CLK2 signal to
time the bus control logic. Several other MCP sig-
nals are referenced to the rising edge of this signal.
When CKM = 1 (synchronous mode) this pin also
clocks the data interface and control unit and the
floating-point unit of the MCP. This pin requires
MOS:-level input. The signal on this pin is divided by
two to produce the internal clock signal CLK.

3.1.2 Intel387™ DX MCP CLOCK 2 (NUMCLK?2)

When CKM = 0 (asynchronous mode) this pin pro-
vides the clock for the data interface and control unit
and the floating-point unit of the MCP. In this case,
the ratio of the frequency of NUMCLK2 to the fre-

intal.

quency of CPUCLK2 must lie within the range 10:16
to 14:10. When CKM = 1 (synchronous mode) this
pin is ignored; CPUCLK2 is used instead for the data
interface and control unit and the floating-point unit.
This pin requires TTL-level input.

3.1.3 Intel387™ DX MCP CLOCKING MODE
(CKM)

This pin is a strapping option. When it is strapped to
Vce, the MCP operates in synchronous mode; when
strapped to Vgg, the MCP operates in asynchronous
mode. These modes relate to clocking of the data
interface and control unit and the floating-point unit
only; the bus control logic always operates synchro-
nously with respect to the Intel386 DX Microproces-
sor.

A

CPUCLK2

v

Intel386™Dx cPU

BUS

NUMCLK2

CKM =8
A 4
" INTERFACE SYNCHRONOUS
>
NUMERIC
CORE ASYNCHRONOUS

Intel387™™DX MCP

.

240448-7

Figure 3.2.

20

Asynchronous Operation

20

intal.

3.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
MCP to terminate its present activity and to enter a
dormant state. RESETIN must remain HIGH for at
least 40 NUMCLK2 periods. The HIGH to LOW tran-
sitions of RESETIN must be synchronous with
CPUCLK?2, so that the phase of the internal clock of
the bus control logic (which is the CPUCLK2 divided
by 2) is the same as the phase of the internal clock
of the Intel386 DX CPU. After RESETIN goes LOW,
at least 50 NUMCLK?2 periods must pass before the
first MCP instruction is written into the Intel387 DX
MCP. This pin should be connected to the Intel386
DX CPU RESET pin. Table 3.3 shows the status of
other pins after a reset.

Table 3.3. Output Pin Status During Reset

Pin Value Pin Name
HIGH READYO #, BUSY #
LOW PEREQ, ERROR #

Tri-State OFF D31-D0

3.1.5 PROCESSOR EXTENSION REQUEST
(PEREQ)

When active, this pin signals to the Intel386 DX CPU
that the MCP is ready for data transfer to/from its
data FIFO. When all data is written to or read from
the data FIFO, PEREQ is deactivated. This signal
always goes inactive before BUSY # goes inactive.
This signal is referenced to CPUCLK2. It should be
connected to the Intel386 DX CPU PEREQ input.

3.1.6 BUSY STATUS (BUSY #)

When active, this pin signals to the Intel386 DX CPU
that the MCP is currently executing an instruction.
This signal is referenced to CPUCLK2. It should be
connected to the Intel386 DX CPU BUSY # pin.

Intel387™ DX MATH COPROCESSOR

3.1.7 ERROR STATUS (ERROR #)

This pin reflects the ES bits of the status register.
When active, it indicates that an unmasked excep-
tion has occurred (except that, immediately after a
reset, it indicates to the Intel386 DX Microprocessor
that a Intel387 DX MCP is present in the system).
This signal can be changed to inactive state only by
the following instructions (without a preceding
WAIT): FNINIT, FNCLEX, FNSTENV, and FNSAVE.
This signal is referenced to NUMCLK2. It should be
connected to the Intel386 DX CPU ERROR # pin.

3.1.8 DATA PINS (D31-D0)

These bidirectional pins are used to transfer data
and opcodes between the Intel386 DX CPU and In-
tel387 DX MCP. They are normally connected direct-
ly to the corresponding Intel386 DX CPU data pins.
HIGH state indicates a value of one. DO is the least
significant data bit. Timings are referenced to
CPUCLK2.

3.1.9 WRITE/READ BUS CYCLE (W/R#)

This signal indicates to the MCP whether the In-
tel386 DX CPU bus cycle in progress is a read or a
write cycle. This pin should be connected directly to
the Intel386 DX CPU W/R# pin. HIGH indicates a
write cycle; LOW, a read cycle. This input is ignored
if any of the signals STEN, NPS1 #, or NPS2 is inac-
tive. Setup and hold times are referenced to
CPUCLK2.

3.1.10 ADDRESS STROBE (ADS #)

This input, in conjunction with the READY # input
indicates when the MCP bus-control logic may sam-
ple W/R# and the chip-select signals. Setup and
hold times are referenced to CPUCLK2. This pin
should be connected to the Intel386 DX CPU ADS #

pin.

21

21

Intel387™ DX MATH COPROCESSOR

3.1.11 BUS READY INPUT (READY #)

This input indicates to the MCP when a Intel386 DX
CPU bus cycle is to be terminated. It is used by the
bus-control logic to trace bus activities. Bus cycles
can be extended indefinitely until terminated by
READY #. This input should be connected to the
same signal that drives the Intel386 DX CPU
READY # input. Setup and hold times are refer-
enced to CPUCLK2.

3.1.12 READY OUTPUT (READYO #)

This pin is activated at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re-
quired, this pin must directly or indirectly drive the
Intel386 DX CPU READY # input. Refer to section
3.4 “Bus Operation” for details. This pin is activated
only during bus cycles that select the MCP. This sig-
nal is referenced to CPUCLK2.

3.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the MCP. When
inactive, this pin forces BUSY #, PEREQ, ERROR #,
and READYO# outputs into floating state. D31-D0
are normally floating and leave floating state only if
STEN is active and additional conditions are met.
STEN also causes the chip to recognize its other
chip-select inputs. STEN makes it easier to do on-
board testing (using the overdrive method) of other
chips in systems containing the MCP. STEN should
be pulled up with a resistor so that it can be pulled
down when testing. In boards that do not use on-
board testing, STEN should be connected to V.
Setup and hold times are relative to CPUCLK2. Note
that STEN must maintain the same setup and hold
times as NPS1#, NPS2, and CMDO# (i.e. if STEN
changes state during a Intel387 DX MCP bus cycle,
it should change state during the same CLK period
as the NPS1#, NPS2, and CMDO# signals).

3.1.14 MCP Select #1 (NPS1#)

When active (along with STEN and NPS2) in the first
period of a Intel386 DX CPU bus cycle, this signal
indicates that the purpose of the bus cycle is to com-

22

intal.

municate with the MCP. This pin should be connect-
ed directly to the Intel386 DX CPU M/IO# pin, so
that the MCP is selected only when the Intel386 DX
CPU performs 1/0 cycles. Setup and hold times are
referenced to CPUCLK2.

3.1.15 MCP SELECT #2 (NPS2)

When active (along with STEN and NPS1#) in the
first period of an Intel386 DX CPU bus cycle, this
signal indicates that the purpose of the bus cycle is
to communicate with the MCP. This pin should be
connected directly to the Intel386 DX CPU A31 pin,
so that the MCP is selected only when the Intel386
DX CPU uses one of the I/0 addresses reserved for
the MCP (800000F8 or 800000FC). Setup and hold
times are referenced to CPUCLK2.

3.1.16 COMMAND (CMDO0 #)

During a write cycle, this signal indicates whether an
opcode (CMDO# active) or data (CMDO# inactive)
is being sent to the MCP. During a read cycle, it
indicates whether the control or status register
(CMDO # active) or a data register (CMDO # inactive)
is being read. CMDO # should be connected directly
to the A2 output of the Intel386 DX Microprocessor.
Setup and hold times are referenced to CPUCLK2.

3.2 Processor Architecture

As shown by the block diagram on the front page,
the MCP is internally divided into three sections: the
bus control logic (BCL), the data interface and con-
trol unit, and the floating point unit (FPU). The FPU
(with the support of the control unit which contains
the sequencer and other support units) executes all
numerics instructions. The data interface and control
unit is responsible for the data flow to and from the
FPU and the control registers, for receiving the in-
structions, decoding them, and sequencing the mi-
croinstructions, and for handling some of the admin-
istrative instructions. The BCL is responsible for the
Intel386 DX CPU bus tracking and interface. The
BCL is the only unit in the Intel387 DX MCP that
must run synchronously with the Intel386 DX CPU;
the rest of the MCP can run asynchronously with
respect to the Intel386 DX Microprocessor.

22

intal.

3.2.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
1/0 bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates 1/0 automatically when it
encounters ESC instructions, and the CPU uses re-
served I/0 addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from memory to the MCP and
transferring outputs from the MCP to memory.

3.2.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the
FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, or FSTCW, the control executes it inde-

Intel387™ DX MATH COPROCESSOR

pendently of the FPU and the sequencer. The data
interface and control unit is the one that generates
the BUSY #, PEREQ and ERROR # signals that syn-
chronize Intel387 DX MCP activities with the In-
tel386 DX CPU. It also supports the FPU in all opera-
tions that it cannot perform alone (e.g. exceptions
handling, transcendental operations, etc.).

3.2.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

3.3 System Configuration

As an extension to the Intel386 DX Microprocessor,
the Intel387 DX Math Coprocessor can be connect-
ed to the CPU as shown by Figure 3.3. A dedicated

FROM OTHER PERIPHERALS

N
S—] ckm
’
CLOCK i387™DX MCP cLOCK ‘ R
GENERATOR > NUMCLK2
GENERATOR R (OPTIONAL)
CLK —> I »] CPUCLK2
RESET > »{ RESETIN
»] READY#
-~
< WAIT STATE | |
: B s
HLDA i387™MDx McP
RESET p/c# |
»{ READY# Lock# |
> cLk2 BE3#-BEO# |
—»] BS16# M/10# P NPS 1#
—>] NA# A31 NPS2
—»] HOLD A30-A3 >
= INT# i386™MDx A2 | cMDO#
= Nl CPU /R » w/r#
ADS# » ADS# STEN
D31-D0 |« 32 » D31-D0
BUSY# [« BUSY#
ERROR# |« ERROR#
PEREQ |« PEREQ

240448-8

Figure 3.3. Intel386™ DX Microprocessor and Intel387™ DX Math Coprocessor System Configuration

23

23

Intel387™ DX MATH COPROCESSOR

intal.

Table 3.4. Bus Cycles Definition

STEN NPS1# NPS2 CMDO # W/R# Bus Cycle Type
0 X X X X MCP not selected and all
outputs in floating state
1 1 X X X MCP not selected
1 X 0 X X MCP not selected
1 0 1 0 0 CW or SW read from MCP
1 0 1 0 1 Opcode write to MCP
1 0 1 1 0 Data read from MCP
1 0 1 1 1 Data write to MCP

communication protocol makes possible high-speed
transfer of opcodes and operands between the In-
tel386 DX CPU and Intel387 DX MCP. The Intel387
DX MCP is designed so that no additional compo-
nents are required for interface with the Intel386 DX
CPU. The Intel387 DX MCP shares the 32-bit wide
local bus of the Intel386 DX CPU and most control
pins of the Intel387 DX MCP are connected directly
to pins of the Intel386 DX Microprocessor.

3.3.1 BUS CYCLE TRACKING

The ADS# and READY # signals allow the MCP to
track the beginning and end of the Intel386 DX CPU
bus cycles, respectively. When ADS # is asserted at
the same time as the MCP chip-select inputs, the
bus cycle is intended for the MCP. To signal the end
of a bus cycle for the MCP, READY # may be assert-
ed directly or indirectly by the MCP or by other bus-
control logic. Refer to Table 3.4 for definition of the
types of MCP bus cycles.

3.3.2 MCP ADDRESSING

The NPS1#, NPS2 and STEN signals allow the
MCP to identify which bus cycles are intended for
the MCP. The MCP responds only to 1/0 cycles
when bit 31 of the 1/0 address is set. In other words,
the MCP acts as an |I/0O device in a reserved I/0
address space.

Because Agq is used to select the MCP for data
transfers, it is not possible for a program running on
the Intel386 DX CPU to address the MCP with an |/
O instruction. Only ESC instructions cause the In-
tel386 DX Microprocessor to communicate with the
MCP. The Intel386 DX CPU BS16# input must be
inactive during I/0 cycles when Agq is active.

3.3.3 FUNCTION SELECT

The CMDO# and W/R# signals identify the four
kinds of bus cycle: control or status register read,
data read, opcode write, data write.

24

3.3.4 CPU/MCP Synchronization

The pin pairs BUSY #, PEREQ, and ERROR# are
used for various aspects of synchronization between
the CPU and the MCP.

BUSY # is used to synchronize instruction transfer
from the Intel386 DX CPU to the MCP. When the
MCP recognizes an ESC instruction, it asserts
BUSY #. For most ESC instructions, the Intel386 DX
CPU waits for the MCP to deassert BUSY # before
sending the new opcode.

The MCP uses the PEREQ pin of the Intel386 DX
CPU to signal that the MCP is ready for data transfer
to or from its data FIFO. The MCP does not directly
access memory; rather, the Intel386 DX Microproc-
essor provides memory access services for the
MCP. Thus, memory access on behalf of the MCP
always obeys the rules applicable to the mode of the
Intel386 DX CPU, whether the Intel386 DX CPU be
in real-address mode or protected mode.

Once the Intel386 DX CPU initiates an MCP instruc-
tion that has operands, the Intel386 DX CPU waits
for PEREQ signals that indicate when the MCP is
ready for operand transfer. Once all operands have
been transferred (or if the instruction has no oper-
ands) the Intel386 DX CPU continues program exe-
cution while the MCP executes the ESC instruction.

In 8086/8087 systems, WAIT instructions may be
required to achieve synchronization of both com-
mands and operands. In 80286/80287, Intel386 DX
Microprocessor and Intel387 DX Math Coprocessor
systems, WAIT instructions are required only for op-
erand synchronization; namely, after MCP stores to
memory (except FSTSW and FSTCW) or loads from
memory. Used this way, WAIT ensures that the val-
ue has already been written or read by the MCP be-
fore the CPU reads or changes the value.

24

intal.

Once it has started to execute a numerics instruction
and has transferred the operands from the Intel386
DX CPU, the MCP can process the instruction in par-
allel with and independent of the host CPU. When
the MCP detects an exception, it asserts the ER-
ROR# signal, which causes a Intel386 DX CPU in-
terrupt.

3.3.56 SYNCHRONOUS OR ASYNCHRONOUS
MODES

The internal logic of the Intel387 DX MCP (the FPU)
can either operate directly from the CPU clock (syn-
chronous mode) or from a separate clock (asynchro-
nous mode). The two configurations are distin-
guished by the CKM pin. In either case, the bus con-
trol logic (BCL) of the MCP is synchronized with the
CPU clock. Use of asynchronous mode allows the
Intel386 DX CPU and the FPU section of the MCP to
run at different speeds. In this case, the ratio of the
frequency of NUMCLK2 to the frequency of
CPUCLK2 must lie within the range 10:16 to 14:10.
Use of synchronous mode eliminates one clock gen-
erator from the board design.

3.3.6 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re-
quired, READYO # can be used to drive the Intel386
DX CPU READY # input. If this pin is used, it should
be connected to the logic that ORs all READY out-
puts from peripherals on the Intel386 DX CPU bus.
READYO# is asserted by the MCP only during I/0
cycles that select the MCP. Refer to section 3.4
“Bus Operation” for details.

3.4 Bus Operation

With respect to the bus interface, the Intel387 DX
MCP is fully synchronous with the Intel386 DX Mi-
croprocessor. Both operate at the same rate, be-
cause each generates its internal CLK signal by di-
viding CPUCLK2 by two.

The Intel386 DX CPU initiates a new bus cycle by
activating ADS#. The MCP recognizes a bus cycle,
if, during the cycle in which ADS# is activated,
STEN, NPS1#, and NPS2 are all activated. Proper
operation is achieved if NPS1# is connected to the
M/10# output of the Intel386 DX CPU, and NPS2 to
the A31 output. The Intel386 DX CPU’s A31 output
is guaranteed to be inactive in all bus cycles that do
not address the MCP (i.e. I/0 cycles to other devic-
es, interrupt acknowledge, and reserved types of
bus cycles). System logic must not signal a 16-bit
bus cycle via the Intel386 DX CPU BS16# input dur-
ing 170 cycles when A31 is active.

Intel387™ DX MATH COPROCESSOR

During the CLK period in which ADS# is activated,
the MCP also examines the W/R# input signal to
determine whether the cycle is a read or a write cy-
cle and examines the CMDO# input to determine
whether an opcode, operand, or control/status reg-
ister transfer is to occur.

The Intel387 DX MCP supports both pipelined and
nonpipelined bus cycles. A nonpipelined cycle is one
for which the Intel386 DX CPU asserts ADS# when
no other MCP bus cycle is in progress. A pipelined
bus cycle is one for which the Intel386 DX CPU as-
serts ADS# and provides valid next-address and
control signals as soon as in the second CLK period
after the ADS# assertion for the previous Intel386
DX CPU bus cycle. Pipelining increases the availabil-
ity of the bus by at least one CLK period. The MCP
supports pipelined bus cycles in order to optimize
address pipelining by the Intel386 DX CPU for mem-
ory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 3.4 illustrates the states and
state transitions for MCP bus cycles:

e T, is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after evey nonpipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

® Trs is the READY # sensitive state. Different
types of bus cycle may require a minimum of one
or two successive Trg states. The bus logic re-
mains in Trg state until READY # is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY #, thereby causing additional successive
TRs states.

® Tp is the first state for every pipelined bus cycle.

READY* ADS

"ALWAYS"
READY * ADS#

READY#

240448-9

Figure 3.4. Bus State Diagram

25

Intel387™ DX MATH COPROCESSOR

The READYO # output of the Intel387 DX MCP indi-
cates when a bus cycle for the MCP may be termi-
nated if no extra wait states are required. For all
write cycles (except those for the instructions
FLDENV and FRSTOR), READYO# is always as-
serted in the first Trg state, regardless of the num-
ber of wait states. For all read cycles and write cy-
cles for FLDENV and FRSTOR, READYO# is al-
ways asserted in the second Trg state, regardless
of the number of wait states. These rules apply to
both pipelined and nonpipelined cycles. Systems de-
signers must use READYO # in one of the following
ways:

1. Connect it (directly or through logic that ORs
READY signals from other devices) to the
READY # inputs of the Intel386 DX CPU and In-
tel387 DX MCP.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
MCP bus cycles.

Because different instructions have different
amounts of overhead before, between, and after op-
erand transfer cycles, it is not possible to represent
in a few diagrams all of the combinations of succes-
sive operand transfer cycles. The following bus-cy-
cle diagrams show memory cycles between MCP
operand-transfer cycles. Note however that, during
the instructions FLDENV, FSTENV, FSAVE, and
FRSTOR, some consecutive accesses to the MCP
do not have intervening memory accesses. For the
timing relationship between operand transfer cycles
and opcode write or other overhead activities, see
Figure 3.8.

3.4.1 NONPIPELINED BUS CYCLES
Figure 3.5 illustrates bus activity for consecutive
nonpipelined bus cycles.

3.4.1.1 Write Cycle

At the second clock of the bus cycle, the Intel387
DX MCP enters the Tgrs (READY #-sensitive) state.
During this state, the Intel387 DX MCP samples the
READY # input and stays in this state as long as
READY # is inactive.

26

intal.

In write cycles, the MCP drives the READYO# sig-
nal for one CLK period beginning with the second
CLK of the bus cycle; therefore, the fastest write
cycle takes two CLK cycles (see cycle 2 of Figure
3.5). For the instructions FLDENV and FRSTOR,
however, the MCP forces a wait state by delaying
the activation of READYO# to the second TRg cy-
cle (not shown in Figure 3.5).

When READY # is asserted the MCP returns to the
idle state, in which ADS# could be asserted again
by the Intel386 DX Microprocessor for the next cy-
cle.

3.4.1.2 Read Cycle

At the second clock of the bus cycle, the MCP en-
ters the Trg state. See Figure 3.5. In this state, the
MCP samples the READY # input and stays in this
state as long as READY # is inactive.

At the rising edge of CLK in the second clock period
of the cycle, the MCP starts to drive the D31-DO0
outputs and continues to drive them as long as it
stays in Trg state.

In read cycles that address the MCP, at least one
wait state must be inserted to insure that the In-
tel386 DX CPU latches the correct data. Since the
MCP starts driving the system data bus only at the
rising edge of CLK in the second clock period of the
bus cycle, not enough time is left for the data signals
to propagate and be latched by the Intel386 DX CPU
at the falling edge of the same clock period. The
MCP drives the READYO# signal for one CLK peri-
od in the third CLK of the bus cycle. Therefore, if the
READYO# output is used to drive the Intel386 DX
CPU READY # input, one wait state is inserted auto-
matically.

Because one wait state is required for MCP reads,
the minimum is three CLK cycles per read, as cycle
3 of Figure 3.5 shows.

When READY # is asserted the MCP returns to the
idle state, in which ADS# could be asserted again
by the Intel386 DX CPU for the next cycle. The tran-
sition from TRg state to idle state causes the MCP to
put the tristate D31-DO outputs into the floating
state, allowing another device to drive the system
data bus.

26

Intel387™ DX MATH COPROCESSOR

CYCLE1 CYCLE 2
NON-PIPELINED NON-PIPELINED
MEMORY READ MCP WRITE

T Trs T

CPUCLK2

(CLK)

/S

LU UL LU L
/S /-

CYCLE 3 CYCLE 4
NON-PIPELINED NON-PIPELINED
MCP READ MEMORY WRITE

Trs Trs T Trs

\WAWA WA WA

NPS2, X
NPS1#, X
CMDg# N

W/R#

ADS#

(A

r/
s
—_——

READYO#

-/

READY#

—
(-
R | R

22

TR | R | (8%

DO-D31

R

)--aa-

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or T) states for various non-operand transfer cycles and overhead.

MCP CPU

----- (e K=

240448-10

Figure 3.5. Nonpipelined Read and Write Cycles

3.4.2 PIPELINED BUS CYCLES

Because all the activities of the Intel387 DX MCP
bus interface occur either during the Trg state or
during the transitions to or from that state, the only
difference between a pipelined and a nonpipelined
cycle is the manner of changing from one state to
another. The exact activities in each state are de-
tailed in the previous section “Nonpipelined Bus Cy-
cles”.

When the Intel386 DX CPU asserts ADS# before
the end of a bus cycle, both ADS# and READY #
are active during a Trg state. This condition causes
the MCP to change to a different state named Tp.
The MCP activities in the transition from a Trg state
to a Tp state are exactly the same as those in the
transition from a Trg state to a T, state in nonpipe-
lined cycles.

Tp state is metastable; therefore, one clock period
later the MCP returns to Trg state. In consecutive
pipelined cycles, the MCP bus logic uses only Trs
and Tp states.

Figure 3.6 shows the fastest transition into and out
of the pipelined bus cycles. Cycle 1 in this figure
represents a nonpipelined cycle. (Nonpipelined write
cycles with only one Trg state (i.e. no wait states)
are always followed by another nonpipelined cycle,
because READY # is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 3.7 shows the pipelined write and read cycles
with one additional Trg states beyond the minimum
required. To delay the assertion of READY # re-
quires external logic.

27

27

Intel387™ DX MATH COPROCESSOR

3.4.3 BUS CYCLES OF MIXED TYPE

When the Intel387 DX MCP bus logic is in the Trg
state, it distinguishes between nonpipelined and
pipelined cycles according to the behavior of ADS #
and READY#. In a nonpipelined cycle, only
READY # is activated, and the transition is from Trg
to idle state. In a pipelined cycle, both READY # and
ADS# are active and the transition is first from Trg
state to Tp state then, after one clock period, back
to Trg state.

3.4.4 BUSY# AND PEREQ TIMING
RELATIONSHIP

Figure 3.8 shows the activation of BUSY # at the
beginning of instruction execution and its deactiva-

intal.

tion after execution of the instruction is complete.
When possible, the Intel387 DX MCP may deacti-
vate BUSY # prior to the completion of the current
instruction allowing the CPU to transfer the next in-
struction’s opcode and operands. PEREQ is activat-
ed in this interval. If ERROR# (not shown in the
diagram) is ever asserted, it would occur at least six
CPUCLK2 periods after the deactivation of PEREQ
and at least six CPUCLK2 periods before the deacti-
vation of BUSY #. Figure 3.8 shows also that STEN
is activated at the beginning of a bus cycle.

CYCLE 1 CYCLE 2 CYCLE 3 CYCLE 4
NON-PIPELINED PIPELINED PIPELINED NON-PIPELINED
MEMORY READ MCP WRITE MEMORY READ MCP WRITE
T Trs Trs To Trs Tp Trs T Trs T
NPS2,
NPS1#, X
CMDg#
W/R# \
ADS# \ / \ \ / /
READYO# ~ -/ \ -/
AR/
o T TR | R | R BR
%
DO-D31 e - --- -__.< }(CPU).-__--.< }(CPU)--.

Cycle 1-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.

The opcode write cycles and other overhead are not shown.

Note that the next cycle will be a pipelined cycle if both READY # and ADS# are sampled active at the end of a Trg

state of the current cycle.

240448-11

Figure 3.6. Fastest Transitions to and from Pipelined Cycles

28

28

intal.

Intel387™ DX MATH COPROCESSOR

CPUCLK2
{CLK)
NPSZ,

NPS1#,
M/10%

W/R#

READYO#

READY#

DO-D31

NOTE:

Trs

UL
/]

CYCLE 1
PIPELINED WRITE

Trs

NOTE 1

CYCLE2
PIPELINED READ

Trs Trs

LU L
VAV VaVavaVaVaVa

_1MSs

A

KA

R

(-
W

MEMORY

H

)--?P

1. Cycles between operand write to the MCP and storing result.

MCP

AN

T8

240448-12

Figure 3.7. Pipelined Cycles with Wait States

OPCODE 15T OPERAND
WRITE NOTE 4 WRITE
e [UL UL LU
N NANNANNNNNANNNS
sren / & &
3 (= — s s
ADS# / \
| W
READY# _ _/ N _ ’ N b
BUSY# —ay /
& & 2% 22—
PEREQ [-===11Y ‘ N
NOTE 1 | NOTE 2 NOTE 3 | NOTE 1

NOTES:
1. Instruction dependent.

240448-13

2. PEREQ is an asynchronous input to the Intel386™ DX Microprocessor; it may not be asserted (instruction depen-

dent).

3. More operand transfers.
4. Memory read (operand) cycle is not shown.

Figure 3.8. STEN, BUSY # and PEREQ Timing Relationship

29

29

Intel387™ DX MATH COPROCESSOR

4.0 ELECTRICAL DATA

4.1 Absolute Maximum Ratings*

Case Temperature Tg
UnderBias................. —65°Cto +110°C

Storage Temperature —65°Cto +150°C

Voltage on Any Pin with
Respectto Ground —0.5t0 Vg +0.5V

Power Dissipation.......................... 1.5W

4.2 DC Characteristics

intal.

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the “Absolute
Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond the
“Operating Conditions” is not recommended and ex-
tended exposure beyond the “Operating Conditions”
may affect device reliability.

Table 4.1. DC Specifications Tg = 0° t0 85°C, Vgg = 5V £5%

Symbol Parameter Min Max Units Test Conditions

VL Input LO Voltage —0.3 +0.8 \ (Note 1)

ViH Input HI Voltage 2.0 Vgc + 0.3 \Y (Note 1)

VoL CPUCLK2 Input LO Voltage —0.3 +0.8 \

VGH CPUCLK2 Input HI Voltage 3.7 Voc +0.3 \

VoL Output LO Voltage 0.45 \ (Note 2)

VoH Output HI Voltage 2.4 \ (Note 3)

lcc Supply Current
NUMCLK2 = 32 MHz(4) 160 mA lcc typ. = 95 mA
NUMCLK2 = 40 MHz(#) 180 mA Icc typ. = 105 mA
NUMCLK2 = 50 MHz(4) 210 mA lcc typ. = 125 mA
NUMCLK2 = 66.6 MHz(4) 250 mA Icc typ. = 150 mA

I Input Leakage Current +15 rA 0V < V|y < Voo

ILo 1/0 Leakage Current +15 wA 0.45V < Vo < Voo

CiN Input Capacitance 10 pF fc = 1 MHz

Co 170 or Output Capacitance 12 pF fc = 1 MHz

CcoLk Clock Capacitance 15 pF fc = 1 MHz

NOTES:

-

2. This parameter is measured at I as follows:
data = 4.0 mA
READYO# = 2.5 mA
ERROR#, BUSY #, PEREQ = 2.5 mA

3. This parameter is measured at oy as follows:
data = 1.0 mA
READYO# = 0.6 mA
ERROR#, BUSY #, PEREQ = 0.6 mA

. This parameter is for all inputs, including NUMCLK2 but excluding CPUCLK2.

4. Icc is measured at steady state, maximum capacitive loading on the outputs, CPUCLK2 at the same frequency as

NUMCLK2.

30

30

intal.

4.3 AC Characteristics

Intel387™ DX MATH COPROCESSOR

Table 4.2a. i387 DX/i386 DX Interface and Execution Frequencies

. i387 DX 16-33
i386 DX System Execution Frequency (MHz)
Frequency (MHz) -
Min Max
16 MHz 10.0 MHz 22.4 MHz
20 MHz 12.5 MHz 28.0 MHz
25 MHz 15.6 MHz 33.0 MHz
33 MHz 20.6 MHz 33.0 MHz
NOTE:

The external clock frequencies for the i387 DX and i386 DX are
equal to twice the interface and execution frequencies show

above.

Table 4.2b. Timing Requirements of the Execution Unit
Tc = 0°Cto +85°C,Vgg = 5V £5%

Pin Symbol Parameter 16 MHz-33 Mz Te_s_t Figure
Min (ns) Max (ns) Conditions Reference

NUMCLK2 t Period 15 125 2.0V 4.1
NUMCLK2 t2a High Time 6.25 2.0V
NUMCLK2 t2b High Time 4.5 3.7v
NUMCLK2 t3a Low Time 6.25 2.0V
NUMCLK2 t3b Low Time 4.5 0.8V
NUMCLK2 t4 Fall Time 6 3.7Vt0 0.8V
NUMCLK2 t5 Rise Time 6 0.8Vto 2.7V

Table 4.2¢c. Timing Requirements of the Bus Interface Unit

Tc = 0°Cto +85°C,Vge = 5V +5%
(All measurements made at 1.5V and 50 pF unless otherwise specified)
Pin Symbol Parameter 16 MHz-33 MHz Te_s_t Figure
Min (ns) Max (ns) Conditions Reference

CPUCLK2 t Period 15 125 2.0V 4.1
CPUCLK2 t2a High Time 6.25 2.0V
CPUCLK2 t2b High Time 4.5 3.7V
CPUCLK2 t3a Low Time 6.25 2.0V
CPUCLK2 t3b Low Time 4.5 0.8V
CPUCLK2 t4 Fall Time 6 3.7V 10 0.8V
CPUCLK2 t5 Rise Time 6 0.8V to 3.7V
NUMCLK2/ Ratio 10/16 14/10
CPUCLK2
READYO # t7 Out Delay 4 17 4.2
READYO # (1) t7 Out Delay 4 15 C_ = 25pF
PEREQ t7 Out Delay 4 25
BUSY # t7 Out Delay 4 21
BUSY #(1) t7 Out Delay 4 19 CL = 25pF
ERROR # t7 Out Delay 4 25
D31-D0 8 Out Delay 0 37 4.3
D31-DO t10 Setup Time 8
D31-D0 11 Hold Time 8
D31-D0() t12 Float Time 3 19

31

Intel387™ DX MATH COPROCESSOR

intal.

Table 4.2c. Timing Requirements of the Bus Interface Unit (Continued)
Tc = 0°Cto +85°C,Vge = 5V £5%
(All measurements made at 1.5V and 50 pF unless otherwise specified)

Pin Symbol Parameter 16 MHz-33 MHz Te_s_t Figure
Min (ns) Max (ns) Conditions Reference
PEREQ(®) t13 Float Time 1 30 4.5
BUSY #(2) t13 Float Time 1 30
ERROR #(2) 113 Float Time 1 30
READYO #(2) 13 Float Time 1 30
ADS # t14 Setup Time 13 4.3
ADS # t15 Hold Time 4
W/R# t14 Setup Time 13
W/R# t15 Hold Time 4
READY # t16 Setup Time 7
READY # 17 Hold Time 4
CMDO # t16 Setup Time 13
CMDO # 17 Hold Time 2
NPS1 # 116 Setup Time 13
NPS2
NPS1 # 17 Hold Time 2
NPS2
STEN t16 Setup Time 13
STEN 7 Hold Time 2
RESETIN t18 Setup Time 5 4.4
RESETIN t19 Hold Time 3

NOTES:
1. Not tested at 25 pF.

2. Float delay is not tested. Float condition occurs when maximum output current becomes less than I o in magnitude.

NOM+6

NOM+3

READY 0#, PEREQ
BUSY#, ERROR#

/

NOM-3

D31-D0
NOM-6

NOM-9

NOM-12

50 75 100 125 150

*nom - nominal value 240448-14

NOTE:
This graph will not be linear outside of the C_ range
shown.

Figure 4.0a. Typical Output Valid Delay vs Load
Capacitance at Max Operating Temperature

32

D31-00

/

READY 0#, PEREQ, BUSY#, ERROR¥

150

240448-15

NOTE:
This graph will not be linear outside of the C| range
shown.

Figure 4.0b. Typical Output Rise Time vs Load
Capacitance at Max Operating Temperature

32

't6| o Intel387™ DX MATH COPROCESSOR

VCH (MIN)
CPUCLK2/NUMCLK2
2.0V 7
tZa ! t30
Y
SETUP HOLD
™ MIN DELAY " TIME | TIME
1.5v — 3.0V
INPUTS | —ov
MAX DELAY

240448-16

Figure 4.1. CPUCLK2/NUMCLK2 Waveform and Measurement Points for
Input/Output A.C. Specifications

(CLK) (PH2)

CPUCLK2

t7 MAX

ty MIN——‘
(OUTPUTS) [XXX

(ERROR# REFERENCED TO NUMCLK2)
240448-17

Figure 4.2. Output Signals

33

33

Intel387™ DX MATH COPROCESSOR

(CLK) (PH1) (PH2) (PHT) (PH2)

CPUCLK2

1t 15—
W/RE X X
NPS1#, NPS2, * tis > ‘ }“t”*‘
STEN, X g
CMDO# ‘
—t7— =t “\"*17—‘1
READY# X X
tyg —te—ty;
DO-D31 ;I‘_—:)_.1
(INPUT)
tg MAX—
tg MIN—: e
po-D3! P —
(OUTPUT) ‘ |
240448-18
Figure 4.3. Input and 1/0 Signals
(CLK) (PH1 or PH2) (PH1 or PH2)
CPUCLK2
—-| tg [~ - Y |-
RESET | |
NOTE: 240448-19
The second internal processor phase following RESET high to low transition is PH2.
Figure 4.4. RESET Signal
STEN \ /
L—Hs‘" L*Hs 4“
Do-psLPEREQ Ty
BUSY#, ERROR#, READYO#
240448-20

Figure 4.5. Float from STEN

34

intal.

Intel387™ DX MATH COPROCESSOR

Table 4.3. Other Parameters

CPUCLK2

(CLK)
*

s
RESET
ADS#
READY#
BUSY#
PEREQ

ERROR#

NOTE:

1
\ /]

LU
\/ M\

UL
\/\S

UL
\/ N\

LU1JL
\/\/]

Pin Symbol Parameter Min | Max Units
RESETIN 130 Duration 40 NUMCLK2
RESETIN 131 RESETIN Inactive to 1st Opcode Write 50 NUMCLK2
BUSY # 132 Duration 6 CPUCLK2
BUSY #, ERROR# | t33 ERROR# (In) Active to BUSY # Inactive 6 CPUCLK2
PEREQ, ERROR # 134 PEREQ Inactive to ERROR # Active 6 CPUCLK2
READY #, BUSY # 135 READY # Active to BUSY # Active 4 4 CPUCLK2
READY # 136 Minimum Time from Opcode Write to 6 CPUCLK2

Opcode/Operand Write
READY # 137 Minimum Time from Operand Write to 8 CPUCLK2
Operand Write
15T oPCODE NOTE 1 15T operaND | 2ND O;ERAND
WRITE WRITE WRITE (NOTE 1)

UL
\/ N/

VM

t3 37 34—tz
5 55 {5 5 3 {5 5§ S
—SS——\ /—H $—m /—SS—\ /-55 {5 S
B \../ T _J ,_\.f
=) 4§ \ J—
§ i § 3 {5 55)
[4 £C '
9/,6) e},)&\\
) 3,) {5 f e
§ {5 {5 45 {5

* In NUMCLK2’s
** or last operand

ts2

’.__55_

tss

1. Memory read (operand) cycle is not shown.

240448-21

Figure 4.6. Other Parameters

35

35

Intel387™ DX MATH COPROCESSOR

intal.

Instruction Optional
First Byte Second Byte Fields

1 11011 OPA 1 MOD 1 OPB R/M SIB DISP
2 11011 MF OPA MOD OPB R/M SIB DISP
3 11011 P OPA 1 1 OPB ST()
4 11011 0 1 1 1 1 OP
5 11011 1 1 1 1 1 OP

15-11 10 9 8 7 6 5 4 3 210

5.0 Intel387™ DX MCP EXTENSIONS
TO THE Intel386™ DX CPU
INSTRUCTION SET

Instructions for the Intel387 DX MCP assume one of
the five forms shown in the following table. In all
cases, instructions are at least two bytes long and
begin with the bit pattern 11011B, which identifies
the ESCAPE class of instruction. Instructions that
refer to memory operands specify addresses using
the Intel386 DX CPU addressing modes.

OP = Instruction opcode, possible split into two
fields OPA and OPB

MF = Memory Format
00—32-bit real
01—32-bit integer
10—64-bit real
11—16-bit integer

P = Pop
0—Do not pop stack
1—Pop stack after operation

ESC = 11011

d = Destination
0—Destination is ST(0)
1—Destination is ST(i)

R XOR d
R XOR d

0—Destination (op) Source
1—Source (op) Destination

36

ST(i) = Register stack element /
00 = Stack top
001

Second stack element
[)

111 Eighth stack element

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of the Intel386 DX Microprocessor
instructions (refer to /nte/386™ DX Microprocessor
Programmer’s Reference Manual).

SIB (Scale Index Base) byte and DISP (displace-
ment) are optionally present in instructions that have
MOD and R/M fields. Their presence depends on
the values of MOD and R/M, as for Intel386 DX Mi-
croprocessor instructions.

The instruction summaries that follow assume that
the instruction has been prefetched, decoded, and is
ready for execution; that bus cycles do not require
wait states; that there are no local bus HOLD re-
quest delaying processor access to the bus; and
that no exceptions are detected during instruction
execution. If the instruction has MOD and R/M fields
that call for both base and index registers, add one
clock.

36

In ®

Intel387™ DX MATH COPROCESSOR

Intel387™™ DX MCP Extensions to the Intel386™ DX CPU Instruction Set

Encoding Clock Count Range
Instruction Byte | Byte | Optiona_:l 32-Bit | 32-Bit | 64-Bit | 16-Bit
0 1 Bytes 2-6 Real Integer Real Integer
DATA TRANSFER
FLD = Loada
Integer/real memory to ST(0) [ESCMF1 [MODO00OR/M [SIB/DISP 9-18 26-42 16-23 42-53
Long integer memory to ST(0) [ESC 111 [MoD101R/M | SIB/DISP 26-54
Extended real memory to ST(0) | Escot1 [MOD101R/M [SIB/DISP 12-43
BCD memory to ST(0) [Esc111 | MOD100R/M | SIB/DISP 45-97
ST(i) to ST(0) [ESC 001 [11000ST()] 7-12
FST = Store
ST(0) to integer/real memory | EscmMF1 | MODO10R/M | SIB/DISP 25-43 57-76 32-44 58-76
ST(0) to ST() [Esc1o1 [11010ST() | 7-11
FSTP = Store and Pop
ST(0) to integer/real memory | ESCMF1 | MODO11R/M | SIB/DISP 25-43 57-76 32-44 58-76
ST(0) to long integer memory | Esc111 | MOD111R/M | SIB/DISP 60-82
ST(0) to extended real [Escot1 | MOD111R/M | SIB/DISP 46-52
ST(0) to BCD memory [ESC 111 [MoD110R/M | SIB/DISP 112-190
ST(0) to ST(i) [Escto1 [11011ST() | 7-11
FXCH = Exchange
ST(i) and ST(0) [Escoor [11001ST() | 10-17
COMPARISON
FCOM = Compare
Integer/real memory to ST(0) | EescmrFo | mobotomr/M | siB/pisP 13-25 84-52 14-27 39-62
ST() to ST(0) | Escooo | t11010sTi) | 13-21
FCOMP = Compare and pop
Integer/real memory to ST | Escmro [mopot1mr/M | siB/DiSP 13-25 84-52 14-27 39-62
ST(i) to ST(0) [Escooo | 11011sT) | 13-21
FCOMPP = Compare and pop twice
ST(1) to ST(0) | Esci10 | 11011001 | 13-21
FTST = Test ST(0) | Escoot | 11100100 | 17-25
FUCOM = Unordered compare [Escior | 11100sTi) | 13-21
FUCOMP = Unordered compare
and pop [Escior [t11o1s10) | 13-21
FUCOMPP = Unordered compare
ancbopitiice | Escoto | 11101001 | 13-21
FXAM = Examine ST(0) [Escoot [11100101] 24-37
CONSTANTS
FLDZ = Load +0.0 into ST(0) [Escoor [11101110 | 10-17
FLD1 = Load +1.0 into ST(0) [Escoor [11101000] 15-22
FLDPI = Load pi into ST(0) [Escoor | 11101011 | 26-36
FLDL2T = Load logz(10) into ST(0) [Escoor [11101001] 26-36

Shaded areas indicate instructions not available in 8087/80287.

NOTE:

a. When loading single- or double-precision zero from memory, add 5 clocks.

37

37

Intel387™ DX MATH COPROCESSOR |n'te| o

Intel387™ DX MCP Extensions to the Intel386™ DX CPU Instruction Set (Continued)

Encoding Clock Count Range
Instruction Byte Byte Optional 32-Bit 32-Bit 64-Bit 16-Bit
0 1 Bytes 2-6 Real Integer Real Integer
CONSTANTS (Continued)
FLDL2E = Load logy(e) into ST(0) | Escoot | 11101010 | 26-36
FLDLG2 = Load logyo(2) into ST(0) | Escoot | 11101100 | 25-35
FLDLN2 = Load loge(2) into ST(0) | Escoot | 11101101 | 26-38
ARITHMETIC
FADD = Add
Integer/real memory with ST(0) | EscmFo | mopooomr/M | siB/DISP 12-29 34-56 15-34 38-64
ST(j) and ST(0) | Escdpo | 11000sTi) | 12-26b
FSUB = Subtract
Integer/real memory with ST(0) | EscmFo | mob1orR/M | siB/DISP 12-29 84-56 15-34 38-64°
ST(j) and ST(0) | Eescdro [1110RR/M] 12-26d
FMUL = Multiply
Integer/real memory with ST(0) | Escmro | mobootr/M | siB/DISP 19-32 43-71 23-53 46-74
ST(j) and ST(0) | Escdro | 11001R/M | 17-50e
FDIV = Divide
Integer/real memory with ST(0) | EscmFo [MoD11RR/M | siB/DISP 7785 101-1141 81-91 105-1249
ST(j) and ST(0) | Escdpo | 1111RR/M | 77-80h
FSQRTI = Square root [Escoor [11111010] 97-111
FSCALE = Scale ST(0) by ST(1) [Escoor | 1111101 | 44-82
FPREM = Partial remainder [Escoot [11111000] 56-140
FPREM1 = Partial remainder
(IEEE) | Escoot | 11110101 | 81-168
FRNDINT = Round ST(0) ESC 001 11111100 41-62
to integer
FXTRACT = Extract components
of ST(0) | Escoor | 11110100 | 42-63
FABS = Absolute value of ST(0) [Escoor [11100001] 14-21
FCHS = Change sign of ST(0) [Escoot [11100000] 17-24

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

b. Add 3 clocks to the range whend = 1.

c. Add 1 clock to each range when R = 1.

d. Add 3 clocks to the range when d = 0.

e. typical = 52 (When d = 0, 46-54, typical = 49).
f. Add 1 clock to the range when R = 1.

g. 135-141 when R = 1.

h. Add 3 clocks to the range when d = 1.

i. =0 < ST(0) < + .

38

In ®

Intel387™ DX MCP Extensions to the Intel386™ DX CPU Instruction Set (Continued)

Intel387™ DX MATH COPROCESSOR

Encoding
Instruction Byte Byte Optional Clock Count Range
0 1 Bytes 2-6
TRANSCENDENTAL
FCOSk = Cosine of ST(0) [Escoot [11111111 | 122-680
FPTANK = Partial tangent of ST(0) [Escoot | 11110010 | 162-430i
FPATAN = Partial arctangent [Escoor | 11110011 | 250-420
FSINk = Sine of ST(0) [Escoor | 11111110 | 121-680
FSINCOSK = Sineand cosineof ST©) | ESC001 | 11111011 | 150-650
F2XM1l = 25T — 1 [Escoot [11110000] 167-410
FYL2XM = ST(1) * loga(ST(0)) [Escoot [11110001 | 99-436
FYL2XP1n = ST(1) *loga(ST(O) + 1.0) [EScoo1r [11111001 | 210-447
PROCESSOR CONTROL
FINIT = Initialize MCP [Escotr [11100011] 33
FSTSW AX = Store status word [esc111 | 11100000 | 13
FLDCW = Load control word [Escoot | mop1o1R/M [siB/DISP 19
FSTCW = Store control word [Escior [mobt1i1m/M | siB/DiSP 15
FSTSW = Store status word [Eescior | mobt1i1R/M | siB/DISP 15
FCLEX = Clear exceptions [Escotr [11100010] 11
FSTENV = Store environment [Escoot [mobtiom/m | siB/DisP 103-104
FLDENV = Load environment [Escoot [mob1oom/M | siB/DISP 71
FSAVE = Save state [Eescio1 | mob1i0R/M [siB/DISP 375-376
FRSTOR = Restore state [escio1 [mobtoor/M | siB/DisP 308
FINCSTP = Increment stack pointer [Escoot | 11110111 | 21
FDECSTP = Decrementstack pointer | ESC001 | 11110110 | 22
FFREE = Free ST() [escio1 | 11000sTi) | 18
FNOP = No operations [Escootr [11010000] 12

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

j. These timings hold for operands in the range |x| < /4. For operands not in this range, up to 76 additional clocks may be

needed to reduce the operand.
k.0 <|ST(0) | < 288,
. —1.0 < ST(0) < 1.0.

m. 0 < ST(0) < o, —o0 < ST() < + oo.
n. 0 < |ST(O)] < (2 — SQRT(2))/2, — < ST(1) < + 0.

39

39

40

Intel387™ DX MATH COPROCESSOR

APPENDIX A
COMPATIBILITY BETWEEN
THE 80287 AND THE 8087

The 80286/80287 operating in Real-Address mode
will execute 8086/8087 programs without major
modification. However, because of differences in the
handling of numeric exceptions by the 80287 MCP
and the 8087 MCP, exception-handling routines may
need to be changed.

This appendix summarizes the differences between
the 80287 MCP and the 8087 MCP, and provides
details showing how 8086/8087 programs can be
ported to the 80286/80287.

1. The MCP signals exceptions through a dedicated
ERROR# line to the 80286. The MCP error signal
does not pass through an interrupt controller (the
8087 INT signal does). Therefore, any interrupt-
controller-oriented instructions in numeric excep-
tion handlers for the 8086/8087 should be delet-
ed.

2. The 8087 instructions FENI/FNENI and FDISI/
FNDISI perform no useful function in the 80287. If
the 80287 encounters one of these opcodes in its
instruction stream, the instruction will effectively
be ignored—none of the 80287 internal states will
be updated. While 8086/8087 containing these
instructions may be executed on the
80286/80287, it is unlikely that the exception-
handling routines containing these instructions
will be completely portable to the 80287.

3. Interrupt vector 16 must point to the numeric ex-
ception handling routine.

4. The ESC instruction address saved in the 80287
includes any leading prefixes before the ESC op-
code. The corresponding address saved in the
8087 does not include leading prefixes.

5. In Protected-Address mode, the format of the
80287’s saved instruction and address pointers is
different than for the 8087. The instruction op-
code is not saved in Protected mode—exception
handlers will have to retrieve the opcode from
memory if needed.

6. Interrupt 7 will occur in the 80286 when executing
ESC instructions with either TS (task switched) or
EM (emulation) of the 80286 MSW set (TS = 1 or
EM = 1). If TS is set, then a WAIT instruction will
also cause interrupt 7. An exception handler
should be included in 80286/80287 code to han-
dle these situations.

7. Interrupt 9 will occur if the second or subsequent
words of a floating-point operand fall outside a
segment’s size. Interrupt 13 will occur if the start-
ing address of a numeric operand falls outside a
segment’s size. An exception handler should be
included in 80286/80287 code to report these
programming errors.

8. Except for the processor control instructions, all
of the 80287 numeric instructions are automati-
cally synchronized by the 80286 CPU—the 80286
automatically tests the BUSY# line from the
80287 to ensure that the 80287 has completed its
previous instruction before executing the next
ESC instruction. No explicit WAIT instructions are
required to assure this synchronization. For the
8087 used with 8086 and 8088 processors, ex-
plicit WAITs are required before each numeric in-
struction to ensure synchronization. Although
8086/8087 programs having explicit WAIT in-
structions will execute perfectly on the
80286/80287 without reassembly, these WAIT in-
structions are unnecessary.

9. Since the 80287 does not require WAIT instruc-

tions before each numeric instruction, the
ASM286 assembler does not automatically gener-
ate these WAIT instructions. The ASM86 assem-
bler, however, automatically precedes every ESC
instruction with a WAIT instruction. Although nu-
meric routines generated using the ASM86 as-
sembler will generally execute correctly on the
80286/80287, reassembly using ASM286 may re-
sult in a more compact code image.
The processor control instructions for the 80287
may be coded using either a WAIT or No-WAIT
form of mnemonic. The WAIT forms of these in-
structions cause ASM286 to precede the ESC in-
struction with a CPU WAIT instruction, in the iden-
tical manner as does ASM86.

DATA SHEET REVISION REVIEW

The following list represents the key differences be-

tween this and the -003 versions of the Intel387™

Math Coprocessor Data Sheet. Please review this

summary carefully.

1. Corrected typographical errors.

2. Corrected clock ratio “PIN” name on Table 4.2c
to NUMCLK/CPUCLK.

A-1

41

