O Ointel3870 O O oooogoopcBOODOOO02000000

intal.
tel Intel387™ SX
MATH COPROCESSOR

m New Automatic Power Management m Compatible with the Intel386™ SX
— Low Power Consumption Microprocessor
— Typically 100 mA in Dynamic Mode, — Extends CPU Instruction Set to
and 4 mA in Idle Mode Include Trigonometric, Logarithmic,
m Socket Compatible with Intel387 Family and Exponential
of Math CoProcessors m High Performance 80-Bit Internal
— Hardware and Software Compatible Architecture
— Supported by Over 2100 Commercial g |y pjements ANSI/IEEE Standard
Software Packages 754-1985 for Binary Floating-Point

— 10% to 15% Performance Increase

on Whetstone and Livermore
Benchmarks m Available in a 68-Pin PLCC Package

See Intel Packaging Specification, Order #231369

Arithmetic

The Intel387™ SX Math CoProcessor is an extension to the Intel386™ SX microprocessor architecture. The
combination of the Intel387™ SX with the Intel386™ SX microprocessor dramatically increases the process-
ing speed of computer application software that utilizes high performance floating-point operations. An internal
Power Management Unit enables the Intel387™ SX to perform these floating-point operations while maintain-
ing very low power consumption for portable and desktop applications. The internal Power Management Unit
effectively reduces power consumption by 95% when the device is idle.

The Intel387™ SX Math CoProcessor is available in a 68-pin PLCC package, and is manufactured on Intel’s
advanced 1.0 micron CHMOS |V technology.

240225-22

Intel386 and Intel387 are trademarks of Intel Corporation.

*Other brands and names are the property of their respective owners.

Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoever, including infringement of any patent or
copyright, for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products. Intel retains the right to make
changes to these specifications at any time, without notice. Microcomputer Products may have minor variations to this specification known as errata.

January 1994 Order Number: 240225-009
COPYRIGHT © INTEL CORPORATION, 1995 1

http://www.dzsc.com/ic/sell_search.html?keyword=intel387
http://www.jdbpcb.com/J/
http://pdf.dzsc.com/

Intel387™ SX Math CoProcessor

CONTENTS PAGE
1.0 PIN ASSIGNMENT 5
1.1 Pin Description Table 6
2.0 FUNCTIONAL DESCRIPTION 7
21 FeatureList 7
2.2 Math CoProcessor Architecture 7
2.3 Power Management 8
2.3.1 DynamicMode 8
23.2ldleMode 8
2.4 Compatibility 8
2.5Performancel 8
3.0 PROGRAMMING INTERFACE 9
3.1 InstructionSet 9
3.1.1 Data Transfer Instructions 9
3.1.2 Arithmetic Instructions 9
3.1.8 Comparison Instructions 10

3.1.4 Transcendental
Instructions 10
3.1.5 Load Constant Instructions 10
3.1.6 Processor Instructions 11
3.2RegisterSet ... 11

3.2.1 Status Word (SW) Register 12
3.2.2 Control Word (CW)

Register ...l 15
3.2.3 DataRegister 16
3.2.4 Tag Word (TW) Register 16
3.2.5 Instruction and Data

Pointersl 16

33DataTypesccoeviiiiiiiaa 18
3.4 Interrupt Description 18
3.5 Exception Handling 18
3.6 Initialization 21
3.7 ProcessingModes 21
3.8 Programming Support 21

CONTENTS PAGE
4.0 HARDWARE SYSTEM
INTERFACE 21
4.1 Signal Description 22
4.1.1 Intel386 CPU Clock 2
(CPUCLK2) ... 22
4.1.2 Intel387 Math CoProcessor
Clock 2 (NUMCLK2) 22
4.1.3 Clocking Mode (CKM) 23
4.1.4 System Reset (RESETIN) 23
4.1.5 Processor Request
(PEREQ)covvviiiii.. 23
4.1.6 Busy Status (BUSY#) 23
4.1.7 Error Status (ERROR#) 23
4.1.8 Data Pins (D15-D0) 23
4.1.9 Write/Read Bus Cycle
W/R#) o 23
4.1.10 Address Stobe (ADS#) 23
4.1.11 Bus Ready Input
(READY #) ..o 24
4.1.12 Ready Output
(READYO#) ..o 24
4.1.13 Status Enable (STEN) 24
4.1.14 Math CoProcessor Select 1
(NPST#) ... 24
4.1.15 Math CoProcessor Select 2
(NPS2) ..o 24
4.1.16 Command (CMDO#) 24
4.1.17 System Power (Vo) 24
4.1.18 System Ground (Vgg) 24
4.2 System Configuration 25
4.3 Math CoProcessor Architecture 26
4.3.1 Bus Control LogiC 26
4.3.2 Data Interface and Control
Unit ... 26
4.3.3 Floating Point Unit 26
4.3.4 Power Management Unit 26

CONTENTS PAGE
44BusCycles 26
4.4.1 Intel387 SX Math
CoProcessor Addressing 27
4.4.2 CPU/Math CoProcessor
Synchronization 27
4.4.3 Synchronous/Asynchronous
Modes ...t 27
4.4.4 Automatic Bus Cycle
Termination 27
5.0 BUS OPERATION 27
5.1 Non-pipelined Bus Cycles 28
511 WriteCycle 28
51.2ReadCycle 29
5.2 Pipelined BusCycles 29
5.3 MixedBusCycles 30
5.4 BUSY # and PEREQ Timing
Relationship 32
6.0 PACKAGE SPECIFICATIONS 33
6.1 Mechanical Specifications 33
6.2 Thermal Specifications 33

CONTENTS PAGE
7.0 ELECTRICAL
CHARACTERISTICS 33
7.1 Absolute Maximum Ratings 33
7.2 D.C. Characteristics 34
7.3 A.C. Characteristics 35
8.0 Intel387 SX MATH COPROCESSOR
INSTRUCTIONSET 41

APPENDIX A—Intel387 SX MATH
COPROCESSOR COMPATIBILITY A-1

A.18087/80287 Compatibility A-1
A.1.1 General Differences A-1
A.1.2 Exceptions A-2

APPENDIX B—COMPATIBILITY
BETWEEN THE 80287 AND 8087
MATH COPROCESSOR B-1

CONTENTS PAGE
FIGURES
Figure 1-1 Intel387 SX Math

CoProcessor Pinout 5
Figure 2-1 Intel387 SX Math

CoProcessor Block

Diagram 7
Figure 3-1 Intel 386 SX CPU and

Intel387 Math CoProcessor

RegisterSet 11
Figure 3-2 StatusWord 12
Figure 3-3 ControlWord 15
Figure 3-4 Tag Word Register 16
Figure 3-5 Instruction and Data Pointer

Image in Memory, 32-Bit

Protected Mode Format 17
Figure 3-6 Instruction and Data Pointer

Image in Memory, 16-Bit

Protected Mode Format 17
Figure 3-7 Instruction and Data Pointer

Image in Memory, 32-Bit

Real Mode Format 17
Figure 3-8 Instruction and Data Pointer

Image in Memory, 16-Bit

Real Mode Format 18
Figure 4-1 Intel386 SX CPU and

Intel387 SX Math

CoProcessor System

Configuration 25
Figure 5-1 Bus State Diagram 28
Figure 5-2 Non-Pipelined Read and

Write Cycles 29
Figure 5-3 Fastest Transition to and

from Pipelined Cycles 30
Figure 5-4 Pipelined Cycles with Wait

States ...l 31
Figure 5-5 BUSY # and PEREQ Timing

Relationship 32
Figure 7-1a Typical Output Valid Delay

vs Load Capacitance at Max

Operating Temperature 37
Figure 7-1b Typical Output Slew Time vs

Load Capacitance at Max

Operating Temperature 37
Figure 7-1c Maximum Igc vs

Frequency 37

CONTENTS

Figure 7-2

Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7

TABLES
Table 1-1

Table 3-1

Table 3-2

Table 3-3
Table 3-4
Table 3-5

Table 3-6

Table 3-7

Table 3-8

Table 4-1
Table 4-2

Table 4-3
Table 6-1

Table 6-2

Table 7-1
Table 7-2a

Table 7-2b

Table 7-2¢
Table 8-1

PAGE
CPUCLK2/NUMCLK2
Waveform and
Measurement Points for
Input/Output 38
Output Signals 38
Input and I/0 Signals 39
RESET Signal 39
Float from STEN 40
Other Parameters 40
Pin Cross Reference—
Functional Grouping 5
Condition Code
Interpretation 13

Condition Code Interpretation
after FPREM and FPREM1

Instructions 14
Condition Code Resulting

from Comparison 14
Condition Code Defining
OperandClass 14
Mapping Condition Codes to
Intel386 CPU Flag Bits 14
Intel387 SX Math

CoProcessor Data Type
Representation in Memory 19
CPU Interrupt Vectors

Reserve for Math

CoProcessor 20
Intel387 SX Math

CoProcessor Exceptions 20
Pin Summary 22
Output Pin Status during

Reset ...l 23
Bus Cycle Definition 26
Thermal Resistances

(°C/Watt) 0ycand 6yp 33
Maximum T at Various

Airflowsl 33
D.C. Specifications 34
Timing Requirements of the

Bus Interface Unit 35
Timing Requirements of the
ExecutionUnit 36
Other AC Parameters 36
Instruction Formats 41

Intel o Intel387™ SX MATH COPROCESSOR

1.0 PIN ASSIGNMENT include Vg and Vss planes for power distribution
and all Vg and Vgg pins must be connected to the

The Intel387 SX Math CoProcessor pinout as appropriate plane.
viewed from the top side of the component is shown

in Figure 1-1. Vgc and Vgg (GND) connections must o B NOTE:)
be made to multiple pins. The circuit board should Pins identified as N.C. should remain completely
unconnected.
o N
£g 23
Y 8Y 8Uu8uuE 838 84s 3¢
Z Z > Z > > > > > 0O > x o > QO Z Z
onooooooooononoonon
/ 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52
N.C. 1 51 1 RESETIN
po7 2 O 50 Ve
poe 3 49 71 READY#
Ve 04 48[cMDo#
Vgs 5 47 1 ADS#
D05 6 46 [Ve
po4 7 45 ANPS2
posgs Intel387™ SX Math CoProcessor e pINes 2
vee 0 . 430 Vee
NC. 1o (top view) 42 Vg
D15 11 41 A w/R#
D14 []12 40 [STEN
vee 13 39 Vee
Vg 14 38 vss
D13[15 378 Vee
D12 16 36 [BUSY#
NC. 17 35 |1 ERROR#
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Cooooooooo0oo0oo0oon
; § 8 >m >8 § § >$ >8 >& § g E >8 >£ >8 >$
240225-1
Figure 1-1. Intel387™ SX Math CoProcessor Pinout
Table 1-1. Pin Cross Reference—Functional Grouping
BUSY # 36 D00 19 Vco 4 Vss 5 N.C. 1
PEREQ 56 DO1 20 9 14 10
ERROR # 35 D02 23 13 21 17
ADS # 47 D03 8 22 25 18
CMDO# 48 gog ’ 2? 2; 52
NPS1# 44 0 6 3 8 6
NPS2 45 80673 2 33 3;‘ 6;
STEN 40 0 3 3 6
W/R # 41 D08 24 39 42
D09 28 43 55
READY # 49 D10 29 46 60
READYO # 57 D11 30 50 61
D12 16 58 63
CKM 59 D13 15 62 66
CPUCLK2 54 D14 12 64
NUMCLK2 53 D15 1
RESETIN 51

Intel387™ SX MATH COPROCESSOR |n'te| o

1.1 Pin Description Table

The following table lists a brief description of each
pin on the Intel387 SX Math CoProcessor. For a
more complete description refer to Section 4.1 Sig-
nal Description. The following definitions are used in
these descriptions:

The signal is active LOW.
| Input Signal

0} Output Signal
1/0 Input and Output Signal

Symbol Type Name and Function

ADS # | ADDRESS STROBE indicates that the address and bus cycle definition is valid.

BUSY # (0] BUSY indicates that the Math CoProcessor is currently executing an instruction.

CKM | CLOCKING MODE is used to select synchronous or asynchronous clock modes.

CMDO | COMMAND determines whether an opcode or operand are being sent to the Math
CoProcessor. During a read cycle it indicates which register group is being read.

CPUCLK2 | CPU CLOCK input provides the timing for the bus interface unit and the execution
unit in synchronous mode.

D15-DO0O 170 DATA BUS is used to transfer instructions and data between the Math
CoProcessor and CPU.

ERROR # 0} ERROR signals that an unmasked exception has occurred.

NC — NO CONNECT should always remain unconnected. Connection of a N.C. pin may
cause the Math CoProcessor to malfunction or be incompatible with future
steppings.

NPS1 # | NPX SELECT 1 is used to select the Math CoProcessor.

NPS2 | NPX SELECT 2 is used to select the Math CoProcessor.

NUMCLK2 | NUMERICS CLOCK is used in asynchronous mode to drive the Floating Point
Execution Unit.

PEREQ 0} PROCESSOR EXTENSION REQUEST signals the CPU that the Math
CoProcessor is ready for data transfer to/from its FIFO.

READY # | READY indicates that the bus cycle is being terminated.

READYO # o} READY OUT signals the CPU that the Math CoProcessor is terminating the bus
cycle.

RESETIN | SYSTEM RESET terminates any operation in progress and forces the Math
CoProcessor to enter a dormant state.

STEN | STATUS ENABLE serves as a master chip select for the Math CoProcessor.
When inactive, this pin forces all outputs and bi-directional pins into a floating
state.

W/R# | WRITE/READ indicates whether the CPU bus cycle in progress is a read or a write
cycle.

Vco | SYSTEM POWER provides the + 5V nominal D.C. supply input.

Vss | SYSTEM GROUND provides the OV connection from which all inputs and outputs

are measured.

intal.

2.0 FUNCTIONAL DESCRIPTION

The Intel387 SX Math CoProcessor is designed to
support the Intel386 SX Microprocessor and effec-
tively extend the CPU architecture by providing fast
execution of arithmetic instructions and transcen-
dental functions. This component contains internal
power management circuitry for reduced active pow-
er dissipation and an automatic idle mode.

2.1 Feature List

* New power saving design provides low power
dissipation in active and idle modes.

® Higher Performance, 10%-25% higher bench-
mark performance than the original Intel387 SX
Math CoProcessor.

e High Performance 84-bit Internal Architecture

e Eight 80-bit Numeric Registers, usable as individ-
ually addressable general registers or as a regis-
ter stack.

e Full-range transcendental operations for SINE,
COSINE, TANGENT, ARCTANGENT, and LOG-
ARITHM.

® Programmable rounding modes and notification
of rounding effects.

e Exception reporting either by software polling or
hardware interrupts.

e Fully compatible with the SX Microprocessors.

Intel387™ SX MATH COPROCESSOR

e Expands Intel386 SX CPU data types to include
32-bit, 64-bit, and 80-bit Floating Point; 32-bit and
64-bit Integers; and 18 Digit BCD Operands.

e Directly extends the Intel386 SX CPU Instruction
Set to trigonometric, logarithmic, exponential,
and arithmetic functions for all data types.

e Operates independently of Real, Protected, and
Virtual-86 Modes of the Intel386 SX Microproces-
sors.

¢ Fully compatible with the Intel387 SL Mobile and
DX Math CoProcessors. Implements all Intel387
Math CoProcessor architectural enhancements
over 8087 and 80287.

¢ Implements ANSI/IEEE Standard 754-1985 for
binary floating point arithmetic.

¢ Upward Object Code compatible from 8087 and
80287.

2.2 Math CoProcessor Architecture

As shown in Figure 2-1, the Intel387 SX Math Co-
Processor is internally divided into four sections; the
Bus Control Logic, the Data Interface and Control
Logic, the Floating Point Unit, and the Power Man-
agement Unit. The Bus Control Logic is responsible
for the CPU bus tracking and interface. The Data
Interface and Control Unit latches data and decodes
instructions. The Floating Point Unit executes the
mathematical instructions. The Power Management
Unit is new to the Intel387 family and is the nucleus

BUS CONTROL LOGIC DATA INTERFACE AND CONTROL UNIT

32

FLOATING POINT UNIT

DBUS INTERFACE

STATUS WORD
16

INTERNAL
CONTROL WORD DATA

BUS
|
16 1 16
TAG - WORD
|
|

A 4

16 DATA
p15-00 M| BUFFER

32)

DATA FIFO
2.5x32 BIT
REGISTERS

MICRO INSTRUCTION BUS

MICRO
INSTRUCTION
SEQUENCER

INSTRUCTION
DECODER

r h
18]
4 N
EXPONENT ADDER hl) . W| OPERAND REGISTER
(16-BIT) (A AND B)
4 68

operanD B Exp [
REGISTER (16-8IT)

OPERAND A EXP
EGISTER (16-81T)

E)
- h
EXPONENT Wi BUSES W

I
7| DATA ALIGNMENT AND OPERAND CHECKING

N E -
[68)
(2)

h 4
3

>

(5)
(6)
(7)

| WaNTISSA ADDER
v (68-BIT) +
SUM REGISTER

: 16-BIT LEFT/RIGHT
BARREL SHIFTER +

REGISTER FILE (STACK) 68-BIT REGISTER

(8x80 BITS)

CONSTANT ROM
(44x67 BITS)

MANTISSA 4 BUSES M

STATUS BUS POWER
MANAGEMENT
soess |90
BUS CONTROL

FPU CONTROL +
CORDICS NANO-MACHINE

i

T

CPUCLK2 NUMCLK2

240225-2

Figure 2-1. Intel387™ SX Math CoProcessor Block Diagram

Intel387™ SX MATH COPROCESSOR

of the static architecture. It is responsible for shut-
ting down idle sections of the device to save power.

Microprocessor/Math CoProcessor Interface
The Intel386 CPU interprets the pattern 11011B in
most significant five bits of an instruction as an op-
code intended for a math coprocessor. Instructions
thus marked are called ESCAPE or ESC instruc-
tions. Upon decoding the instruction as an ESC in-
struction, the Intel386 CPU transfers the opcode to
the math coprocessor through an 1/0 write cycle at
a dedicated address (8000F8H) outside the normal
programmed |/O address range. The math coproc-
essor has dedicated output signals for controlling
the data transfer and notifying the CPU if the Math
CoProcessor is busy or that a floating point error has
occurred.

2.3 Power Management

The Intel387 SX Math CoProcessor offers two
modes of power management; dynamic and idle.

2.3.1 DYNAMIC MODE

Dynamic Mode is when the device is executing an
instruction. Using Intel’s CHMOS |V technology, the
Intel387 SX Math CoProcessor draws considerably
less power than its predecessor. The active power
supply current is reduced to approximately 100 mA
at 20 MHz and provides low case temperatures.

2.3.2 IDLE MODE

When an instruction is not being executed, the
Intel387 SX Math CoProcessor will automatically
change to /dle Mode. Three clocks after completion
of the previous instruction, the internal power man-
ager shuts down the floating point execution unit
and all non-essential circuitry. Only portions of the
Bus Interface Unit remain active to monitor the CPU
bus activity and to accept the next instruction when
it is transferred. When the CPU transfers the next
instruction to the Math CoProcessor, the Intel387 SX

intal.

Math CoProcessor accepts the instruction and
ramps the internal core within one clock so there is
no impact to performance or throughput. In idle
mode, the Intel387 SX Math CoProcessor draws typ-
ically 4 mA of current and reduces case temperature
to near ambient.

NOTE:
In asynchronous clock mode (CKM = 0), the inter-
nal idle mode is disabled.

2.4 Compatibility

The Intel387 SX Math CoProcessor is compatible
with the Intel387 SL Mobile Math CoProcessor. Due
to the increased performance and internal pipelining
effects, diagnostic programs should never use in-
struction execution time for test purposes.

2.5 Performance

The increased performance of floating point calcula-
tions can be attributed to the 84-bit architecture and
floating point processor. For the CPU to execute
floating point calculations requires very long soft-
ware emulation methods with reduced resolution
and accuracy. The performance of the Intel387 SX
Math CoProcessor has been further enhanced
through improvements in the internal microcode and
through internal architectural changes. These refine-
ments will increase Whetstone benchmarks by ap-
proximately 10% to 25% over the original Intel387
SX Math CoProcessor.

Real performance, however, should be measured
with application software. Depending upon software
coding, system overhead, and percentage of floating
point instructions, performance can vary significant-
ly.

intal.

3.0 PROGRAMMING INTERFACE

The Intel387 SX Math CoProcessor effectively ex-
tends to an Intel386 Microprocessor system addi-
tional instructions, registers, data types, and inter-
rupts specifically designed to facilitate high-speed
floating point processing. All communication be-
tween the CPU and the Math CoProcessor is trans-
parent to applications software. The CPU automati-
cally controls the Math CoProcessor whenever a
numerics instruction is executed. All physical memo-
ry and virtual memory of the CPU are available for
storage of the instructions and operands of pro-
grams that use the Math CoProcessor. All memory
addressing modes, including use of displacement,
base register, index register, and scaling are avail-
able for addressing numerical operands.

The Intel387 SX Math CoProcessor is software com-
patible with the Intel387 DX Math CoProcessors and
supports all applications written for the Intel386 CPU
and Intel387 Math CoProcessors.

3.1 Instruction Set

The Intel386 CPU interprets the pattern 11011B in
most significant five bits of an instruction as an op-
code intended for a math coprocessor. Instructions
thus marked are called ESCAPE or ESC instruction.

The typical Math CoProcessor instruction accepts
one or two operands and produces one or some-
times two results. In two-operand instructions, one
operand is the contents of the Math CoProcessor
register, while the other may be a memory location.
The operands of some instructions are predefined;
for example, FSQRT always takes the square root of
the number in the top stack element.

The Intel387 SX Math CoProcessor instruction set
can be divided into six groups. The following sec-
tions gives a brief description of each instruction.
Section 8.0 defines the instruction format and byte
fields. Further details can be obtained from the
Intel387 User’'s Manual, Programmer’s Reference,
Order #231917.

3.1.1 DATA TRANSFER INSTRUCTIONS

The class includes the operations that load, store,
and convert operands of any support data types.

Real Transfers
FLD Load Real (single, double, extended)
FST Store Real (single, double)

FSTP Store Real and pop (single, double, ex-
tended)

FXCH Exchange registers

Intel387™ SX MATH COPROCESSOR

Integer Transfers

FILD Load (convert from) Integer (word, short,
long)

FIST Store (convert to) Integer (word, short)

FISTP Store (convert to) Integer and pop (word,
short, long)

Packed Decimal Transfers
FBLD Load (convert from) packed decimal
FBSTP Store packed decimal and pop

3.1.2 ARITHMETIC INSTRUCTIONS

This class of instructions provide variations on the
basic add, subtract, multiply, and divide operations
and a number of other basic arithmetic operations.
Operands may reside in registers or one operand
may reside in memory.

Addition
FADD Add Real
FADDP Add Real and pop
FIADD Add Integer
Subtraction
FSUB Subtract Real
FSUBP Subtract Real and pop
FISUB Subtract Integer
FSUBR Subtract Real reversed

FSUBRP Subtract Real reversed and pop

FISUBR Subtract Integer reversed
Multiplication
FMUL Multiply Real
FMULP Multiply Real and pop
FIMUL Multiply Integer
Division
FDIV Divide Real
FDIVP Divide Real and pop
FIDIV Divide Integer
FDIVR Divide Real reversed
FDIVRP Divide Real reversed and pop
FIDIVR Divide Integer reversed

Intel387™ SX MATH COPROCESSOR

Other Operations

FSQRT Square Root

FSCALE Scale

FPREM Partial Remainder

FPREM1 |EEE standard partial remainder

FRNDINT Round to Integer

FXTRACT Extract Exponent and Significand
FABS Absolute Value

FCHS Change sign

3.1.3 COMPARISON INSTRUCTION

Instructions of this class allow comparison of num-
bers of all supported real and integer data types.
Each of these instructions analyzes the top stack
element often in relationship to another operand and
reports the result as a condition code in the status
word.

FCOM
FCOMP
FCOMPP

Compare Real

Compare Real and pop

Compare Real and pop twice
FUCOM Unordered compare Real
FUCOMP Unordered compare Real and pop

FUCOMPP Unordered compare Real and pop
twice

FICOM Compare Integer
FICOMP Compare Integer and pop
FTST Test

FXAM Examine

10

intal.

3.1.4 TRANSCENDENTAL INSTRUCTIONS

This group of the Intel387 operations includes trigo-
nometric, inverse trigonometric, logarithmic and ex-
ponential functions. The transcendental operate on
the top one or two stack elements, and they return
their results to the stack. The trigonometric opera-
tions assume their arguments are expressed in radi-
ans. The logarithmic and exponential operations
work in base 2.

FSIN Sine

FCOS Cosine

FSINCOS Sine and cosine
FPTAN Tangent

FPATAN Arctangent of ST(1)/ST
F2XM1 2X—1

FYL2X Y * logoX

FYL2XP1 Y * loga(X + 1)

3.1.5 LOAD CONSTANT INSTRUCTIONS

Each of these instructions loads (pushes) a com-
monly used constant onto the stack. The constants
have extended real values nearest to the infinitely
precise numbers. The only error that can be gener-
ated is an Invalid Exception if a stack overflow oc-
curs.

FLDZ
FLDA1
FLDPI

Load +0.0
Load +1.0
Load 7
FLDL2T Load logy 10
FLDL2E Load logoe
FLDLG2 Load logqg2
FLDLN2 Load logg2

intal.

3.1.6 PROCESSOR INSTRUCTIONS
(ADMINISTRATIVE)

FINIT Initialize Math CoProcessor
FLDCW Load Control Word
FSTCW Store Control Word
FLDCW Load Status Word

FSTSW Store Status Word

FSTSW AX Store Status Word to AX register

FCLEX Clear Exceptions
FSTENV Store Environment
FLDENV Load Environment
FSAVE Save State

Intel387™ SX MATH COPROCESSOR

FRSTOR Restore State

FINCSTP Increment Stack pointer
FDECSTP Decrement Stack pointer
FFREE Free Register

FNOP No Operation

FWAIT Report Math CoProcessor Error

3.2 Register Set

Figure 3-1 shows the Intel387 SX Math CoProcessor
register set. When a Math CoProcessor is present in
a system, programmers may use these registers in
addition to the registers normally available on the
CPU.

i386™ Microprocessor Registers

GENERAL REGISTERS

31 1815 0 SEGMENT REGISTERS
EAX | Alx 5 0
AH | AL cs
EBX BX s:s
| BH | BL oS
ECX 2 £s
| cH | cL ;
EDX DX FS
| oH | DL Gs
ESI s
| s 0
EDI | DI E:“; '
: " EFLAGS
EBP | BP : . .
ESP | SP

i387™ Math CoProcessor Data Registers

Tag
Field
79 78 64 63 0 1 0
RO | Sign | Exponent Significand
R1
R2
R3
R4
R5
R6
R7
15 0
Control Register
Status Register
Tag Word
47 0
Instruction Pointer (in CPU)
Data Pointer (in CPU)

Figure 3-1. Intel386™ CPU and Intel387™ Math CoProcessor Register Set

11

Intel387™ SX MATH COPROCESSOR

3.2.1 STATUS WORD (SW) REGISTER

The 16-bit status word (in the status register) shown
in Figure 3-2 reflects the overall state of the Math
CoProcessor. It can be read and inspected by pro-
grams using the FSTSW memory or FSTSW AX in-
structions.

Bit 15, the Busy bit (B) is included for 8087 compati-
bility only. It always has the same value as the Error
Summary bit (ES, bit 7 of status word); it does not
indicate the status of the BUSY # output of the Math
CoProcessor.

Bits 13—11 (TOP) serves as the pointer to the Math
CoProcessor data register that is the current Top-Of-
Stack. The significance of the stack top is described
in Section 3.2.5 Data Registers.

The four numeric condition code bits (C3-Co, Bit 14,
10-8) are similar to the flags in a CPU; instructions
that perform arithmetic operations update these bits
to reflect the outcome. The effects of the instruc-
tions on the condition code are summarized in Ta-
bles 3-1 through 3-4. These condition code bits are
used principally for conditional branching. The
FSTSW AX instructions stores the Math CoProces-
sor status word directly to the CPU AX register, al-
lowing the condition codes to be inspected efficient-
ly by Intel386 CPU code. The Intel386 CPU SAHF
instruction can copy C3—Cg directly to the flag bits to
simplify conditional branching. Table 3-5 shows the
mapping of these bits to the Intel386 CPU flag bits.

intal.

Bit 7 is the error summary (ES) status bit. This bit is
set if any unmasked exception bit is set; it is clear
otherwise. If this bit is set, the ERROR# signal is
asserted.

Bit 6 is the stack flag (SF). This bit is used to distin-
guish invalid operations due to stack overflow or un-
derflow from other kinds of invalid operations. When
SF is set, bit 9 (C4) distinguishes between stack
overflow (C1 = 1) or underflow (C1 = 0).

Bit 5-0 are the six exception flags of the status word
and are set to indicate that during an instruction exe-
cution the Math CoProcessor has detected one of
six possible exception conditions since these status
bits were last cleared or reset. Section 3.5 entitled
Exception Handling explains how they are set and
used.

The exception flags are “sticky” bits and can only
be cleared by the instructions FINIT, FCLEX,
FLDENV, FSAVE, and FRSTOR. Note that when a
new value is loaded into the status word by the
FLDENV or FRSTOR instruction, the value of ES (bit
7) and B (bit 15) are not derived from the values
loaded from memory but rather are dependent upon
the values of the exception flags (bits 5-0) in the
status word and their corresponding masks in the
control word. If ES is set in such a case, the
ERROR# output of the Math CoProcessor is acti-
vated immediately.

BUSY

TOP OF STACK POINTER

CONDITION CODE

ERROR SUMMARY STATUS
STACK FLAG

EXCEPTION FLAGS:
PRECISION

UNDERFLOW

OVERFLOW

ZERO DIVIDE

DENORMALIZED OPERAND

INVALID OPERATION

TOP values:
000 = Register 0 is Top of Stack
001 = Register 1 is Top of Stack

111 = Register-7 is Top of Stack

ES is set if any unmasked exception bit is set; cleared otherwise. See Table 2-2 for interpretation of condition code.

For definitions of exceptions, refer to the section entitled “Exception Handling”

240225-3

Figure 3-2. Status Word

12

intal.

Intel387™ SX MATH COPROCESSOR

Table 3-1. Condition Code Interpretation

Instruction CO0 (S) C3(2) C1(A) C2(C)
FPREM, FPREM1 Three least significant bits Reduction
(see Table 3-2) of quotient 0 = complete
Q2 Qo Qi 1 = incomplete
or O/U#
FCOM, FCOMP,
FCOMPP, FTST, Result of comparison Zero Operand is not
FUCOM, FUCOMP, (see Table 3-3) or O/U# comparable
FUCOMPP, FICOM, (Table 3-3)
FICOMP
FXAM Operand class Sign Operand class
(see Table 3-4) orO/U# (Table 3-4)
FCHS, FABS, FXCH,
FINCSTP, FDECSTP, Zero
Constant loads, UNDEFINED UNDEFINED
FXTRACT, FLD, or O/U#
FILD, FBLD,
FSTP (ext real)
FIST, FBSTP,
FRNDINT, FST,
FSTP, FADD, FMUL, Roundup
FDIV, FDIVR, UNDEFINED UNDEFINED
FSUB, FSUBR, or O/U#
FSCALE, FSQRT,
FPATAN, F2XM1,
FYL2X, FYL2XP1
FPTAN, FSIN Roundup Reduction
FCOS, FSINCOS UNDEFINED orO/U#, 0 = complete
undefined 1 = incomplete
ifC2 =1

FLDENV, FRSTOR

Each bit loaded from memory

FLDCW, FSTENYV,

FSTCW, FSTSW, UNDEFINED
FCLEX, FINIT,
FSAVE

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit
distinguishes between stack overflow (C1=1) and underflow (C1=0).

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is
complete. When reduction is incomplete the value at the top of the stack is a partial
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this
case the original operand remains at the top of the stack.

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the
instruction was upward.

UNDEFINED Do not rely on finding any specific value in these bits.

13

Intel387™ SX MATH COPROCESSOR |n'te| o

Table 3-2. Condition Code Interpretation after FPREM and FPREM1 Instructions

Condition Code Interpretation after FPREM and FPREM1
C2 c3 C1 Cco
Incomplete Reduction:
1 X X X further interation required
for complete reduction
Q1 Qo Q2 Q MOD8
0 0 0 0
? (1) 8 ; Complete Reduction:
0 1 1 0 3 C0, C3, C1 contain three least
0 0 1 4 significant bits of quotient
0 1 1 5
1 0 1 6
1 1 1 7

Table 3-3. Condition Code Resulting from Comparison
Order C3 Cc2 Cco

TOP > Operand
TOP < Operand
TOP = Operand
Unordered

. 00
- O OO
- O =0

Table 3-4. Condition Code Defining Operand Class

C3 Cc2 C1 co Value at TOP

0 0 0 0 + Unsupported
0 0 0 1 + NaN

0 0 1 0 — Unsupported
0 0 1 1 — NaN

0 1 0 0 + Normal

0 1 0 1 + Infinity

0 1 1 0 — Normal

0 1 1 1 — Infinity

1 0 0 0 +0

1 0 0 1 + Empty

1 0 1 0 -0

1 0 1 1 — Empty

1 1 0 0 + Denormal

1 1 1 0 — Denormal

Table 3-5 Mapping Condition Codes to Intel386™ CPU Flag Bits

15 8
l:soizof:sﬁ";mus WORD |C3| | | |c2| G |°0|
Y A A 20 4
is8s cpuFLac [Jze[T T T[er]-Jer]

240225-4

14

intal.

3.2.2 CONTROL WORD (CW) REGISTER

The Math CoProcessor provides the programmer
with several processing options that are selected by
loading a control word from memory into the control
register. Figure 3-3 show the format and encoding of
fields in the control word.

The low-order byte of the control word register is
used to configure the exception masking. Bits 5-0
of the control word contain individual masks for each
of the six exceptions that the Math CoProcessor rec-
ognizes. See Section 3.5, Exception Handling, for
further explanation on the exception control and def-
inition.

The high-order byte of the control word is used to
configure the Math CoProcessor operating mode, in-
cluding precision, rounding and infinity control.

® The rounding control (RC) field (bits 11-10) pro-
vide for directed rounding and true chop, as well
as the unbiased round to nearest even mode
specified in the IEEE standard. Rounding control
affects only those instructions that perform
rounding at the end of the operation (and thus
can generate a precision exception); namely,
FST, FSTP, FIST, all arithmetic instructions (ex-
cept FPREM, FPREM1, FXTRACT, FABS, and
FCHS) and all transcendental instructions.

Intel387™ SX MATH COPROCESSOR

® The precision control (PC) field (bits 9-8) can be
used to set the Math CoProcessor internal oper-
ating precision of the significand at less than the
default of 64 bits (extended precision). This can
be useful in providing compatibility with early gen-
eration arithmetic processors of smaller preci-
sion. PC affects only the instructions FADD,
FSUB(R), FMUL, FDIV(R), and FSQRT. For all
other instructions, either the precision is deter-
mined by the opcode or extended precision is
used.

® The “infinity control bit” (bit 12) is not meaningful
to the Intel387 SX Math CoProcessor and pro-
grams must ignore its value. To maintain compat-
ibility with the 8087 and 80287 (non-387 core),
this bit can be programmed, however, regardless
of its value the Intel387 SX Math CoProcessor
always treats infinity in the affine sense (— o <
+ o0). This bit is initialized to zero both after a
hardware reset and after FINIT instruction.

All other bits are reserved and should not be pro-
grammed, to assure compatibility with future proces-
sors.

RESERVED

RESERVED*

ROUNDING CONTROL

PRECISION CONTROL

RESERVED

EXCEPTION MASKS:
PRECISION

UNDERFLOW

*10" AFTER RESET OR FINIT;
CHANGEABLE UPON LOADING THE
CONTROL WORD (CW). PROGRAMS
MUST IGNORE THIS BIT.

OVERFLOW

ZERO DIVIDE

DENORMALIZED OPERAND
INVALID OPERATION

Precision Control
00—24 bits (single precision)
01—(reserved)
10—53 bits (double precision)
11—64 bits (extended precision)

240225-5

Rounding Control
00—Round to nearest or even
01—Round down (toward — o)
10—Round up (toward + o)
11—Chop (truncate toward zero)

Figure 3-3. Control Word

15

Intel387™ SX MATH COPROCESSOR

3.2.3 DATA REGISTER

Intel387 SX Math CoProcessor data register set
consists of eight registers (RO—R7) which are treat-
ed as both a stack and a general register file. Each
of these data registers in the Math CoProcessor is
80 bits wide and is divided into fields corresponding
to the Math CoProcessor’s extended-precision real
data type, which is used for internal calculations.

The Math CoProcessor register set can be accessed
either as a stack, with instructions operating on the
top one or two stack elements, or as individually ad-
dressable registers. The TOP field in the status word
identifies the current top-of-stack register. A “push”
operation decrements TOP by one and loads a value
into the new top register. A “store and pop” opera-
tion stores the value from the current top register
into memory and then increments TOP by one. The
Math CoProcessor register stack grows ‘“‘down”
toward lower-addressed registers.

Most of the Intel387 SX Math CoProcessor opera-
tions use the register stack as the operand(s) and/or
as a place to store the result. Instructions may ad-
dress the data register either implicitly or explicitly.
Many instructions operate on the register at the top
of the stack. These instructions implicitly address
the register at which TOP points. Other instructions
allow the programmer to explicitly specify which reg-
ister to use. Explicit register addressing is also rela-
tive to TOP (where ST denotes the current stack top
and ST(i) refers to the i'th register from the ST in the
stack so the real register address in computed as
ST +i).

3.2.4 TAG WORD (TW) REGISTER
The tag word marks the content of each numeric

data register, as Figure 3-4 shows. Each two-bit tag
represents one of the eight data register. The princi-

intal.

pal function of the tag word is to optimize the Math
CoProcessor’s performance and stack handling by
making it possible to distinguish between empty and
non-empty register locations. It also enables excep-
tion handlers to identify special values (e.g. NaNs or
denormals) in the contents of a stack location with-
out the need to perform complex decoding of the
actual data.

3.2.5 INSTRUCTION AND DATA POINTERS

Because the Math CoProcessor operates in parallel
with the CPU, any exceptions detected by the Math
CoProcessor may be reported after the CPU has ex-
ecuted the ESC instruction which caused it. To allow
identification of the numeric instruction which
caused the exception, the Intel386 Microprocessor
contains registers that aid in diagnosis. These regis-
ters supply the address of the failing instruction and
the address of its numeric memory operand (if ap-
propriate).

The instruction and data pointers are provided for
user-written exception handlers. These registers are
located in the CPU, but appear to be located in the
Math CoProcessor because they are accessed by
the ESC instructions FLDENV, FSTENV, FSAVE,
and FRSTOR; which transfer the values between
the registers and memory. Whenever the CPU exe-
cutes a new ESC instruction (except administrative
instructions), it saves the address of the instruction
(including any prefixes that may be present), the ad-
dress of the operand (if present) and the opcode.

The instruction and data pointers appear in one of
four formats depending on the operating mode of
the CPU (protected mode or real-address mode)
and depending on the operand size attribute in ef-
fect (32-bit operand or 16-bit operand). (See Figures
3-5, 3-6, 3-7, and 3-8.) Note that the value of the
data pointer is undefined if the prior ESC instruction
did not have a memory operand.

field refers to logical top of stack.

1 Empty

15 0
TAG(7) | TAG®) | TAG() | TAG@) | TAG@) | TAG(® | TAG(H) | TAG(0)
NOTE:

The index i of tag(i) is not top-relative. A program typically uses the “top” field of Status Word to determine which tag(i)

TAG VALUES:
00 = Valid
01 = Zero
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats

Figure 3-4. Tag Word Register

16

Intel387™ SX MATH COPROCESSOR

32-BIT PROTECTED MODE FORMAT

31 2 15 7 0
RESE:RVED CONTR(?L WORD 0

RESE:RVED STATus:: WORD 4

RESE:RVED TAG \ZVORD 8

' IP OFFSET . c

00000 OPCODE 1¢_o cs SEL:ECTOR 10

. DATA OPERAND OFFSET . 14

RESE:RVED OPERAND :SELECTOR 18

Figure 3-5. Instruction and Data Pointer Image in Memory, 32-Bit Protected-Mode Format

15

16-BIT PROTECTED MODE FORMAT

7

Il
CONTROIL WORD 0
STATUSI WORD 2
TAG VIVORD 4
P OFIFSET 6
cs SELIECTOR 8
OPERANIID OFFSET A
OPERAND ISELECTOR C

Figure 3-6. Instruction and Data Pointer Image in Memory, 16-Bit Protected-Mode Format

32-BIT REAL-ADDRESS MODE FORMAT
15

31 I23 I7 0
RESE:RVED CONTRO:L WORD 0
RESE:RVED STATU% WORD 4
RESE:RVED TAG \%\IORD 8
RESE:RVED INSTRUCTION:POINTER 15.0 C
0000 | INST:RUCTION POINTER 31..16 | 0 | OP:CODE 10..0 10
RESE:RVED OPERAND P:OINTER 15.0 14
0000 | OP:ERANDPOINTER31..16 . | 0000 00000000 18

Figure 3-7. Instruction and Data Pointer Image in Memory, 32-Bit Real-Mode Format

17

Intel387™ SX MATH COPROCESSOR

16-BIT REAL-ADDRESS MODE AND VIRTUAL 8086 MODE FORMAT

15 7 0

f

CONTROL WORD 0
f

STATUS WORD 2
1

TAG WORD 4
1

INSTRUCTION POINTER 15..0 6
1

IP19.16 | 0 | OPCODE 10..0 8
1

OPERAND POINTER 15..0 A
1

DP19.16|0|000000000000
1

Figure 3-8. Instruction and Data Pointer Image in Memory, 16-Bit Real-Mode Format

3.3 Data Types

Table 3-6 lists the seven data types that the Math
CoProcessor supports and presents the format for
each type. Operands are stored in memory with the
least significant digit at the lowest memory address.
Programs retrieve these values by generating the
lowest address. For maximum system performance,
all operands should start at physical-memory ad-
dresses that correspond to the word size of the
CPU; operands may begin at any other addresses,
but will require extra memory cycles to access the
entire operand.

The data type formats can be divided into three
classes: binary integer, decimal integer, and binary
real. These formats, however, exist in memory only.
Internally, the Math CoProcessor holds all numbers
in the extended-precision real format. Instructions
that load operands from memory automatically con-
vert operands represented in memory as 16, 32, or
64-bit integers, 32 or 64-bit floating point numbers,
or 18 digit packed BCD numbers into extended-pre-
cision real format. Instructions that store operands in
memory perform the inverse type conversion.

In addition to the typical real and integer data values,
the Intel387 SX Math CoProcessor data formats en-
compass encodings for a variety of special values.
These special values have significance and can ex-
press relevant information about the computations
or operations that produced them. The various types
of special values are denormal real numbers, zeros,
positive and negative infinity, NaNs (Not-a-Number),
Indefinite, and unsupported formats. For further in-
formation on data types and formats, see the In-
tel387 Programmer’s Reference Manual.

18

3.4 Interrupt Description

CPU interrupts are used to report errors or excep-
tional conditions while executing numeric programs
in either real or protected mode. Table 3-7 shows
these interrupts and their functions.

3.5 Exception Handling

The Math CoProcessor detects six different excep-
tion conditions that occur during instruction execu-
tion. Table 3-8 lists the exception conditions in order
of precedence, showing for each the cause and the
default action taken by the Math CoProcessor if the
exception is masked by its corresponding mask bit in
the control word.

Any exception that is not masked by the control
word sets the corresponding exception flag of the
status word, sets the ES bit of the status word, and
asserts the ERROR# signal. When the CPU at-
tempts to execute another ESC instruction or WAIT,
exception 16 occurs. The exception condition must
be resolved via an interrupt service routine. The re-
turn address pushed onto the CPU stack upon entry
to the service routine does not necessarily point to
the failing instruction nor to the following instruction.
The CPU saves the address of the floating-point in-
struction that caused the exception and the address
of any memory operand required by that instruction.

intal.

Table 3-6. Intel387™™ SX Math CoProcessor Data Type Representation in Memory

Intel387™ SX MATH COPROCESSOR

o Most Significant Byte = HIGHEST ADDRESSED BYTE
ata Range Precision
Formats 7 o|7 0|7 o|7 o|7 o|7 o|7 of7 o|7 of7 o
Word Integer | 104 16 Bits E CompemenT)
15 0
Short Integer | 109 32 Bits —I COMPLEMENT)
3 0
Long Integer | £1018 64 Bits Iggrgéfsmeun
63 0
MAGNITUDE
Packed BCD | £1018 18 Digits SL"]a,,la,”a.slc.“u‘;,o‘“u‘.,dw,ugld.,,a,ldb,aklulldé.a“o.Lm,I
79 72 0
Single Precision | +10+38 24 Bits sl EASE | SIGNIFICAND I
3 28X _ N 0
Double Precision |+10+308| 53 Bits [cfibiian | SIGNIFICAND)
63 528 _ L o
'E:”:;ec?:g: +10+ 4932 64 Bits sI e h SIGNIFICAND I
9 64 635 [
240225-23
NOTES:

. S = Sign bit (0 = positive, 1

negative)

. d, = Decimal digit (two per byte)
. X = Bits have no significance; Math CoProcessor ignores when loading, zeros when storing

. | = Integer bit of significand; stored in temporary real, implicit in single and double precision
. Exponent Bias (normalized values):

1
2
3
4. A = Position of implicit binary point
5
6

Single: 127 (7FH)
Double: 1023 (3FFH)

Extended REal: 16383 (3FFFH)
. Packed BCD: (—1)S (D17..Do)
. Real: (—1)S (2E-BIAS) (Fq Fy...)

© N

19

Intel387™ SX MATH COPROCESSOR

intal.

Table 3-7. CPU Interrupt Vectors Reserved for Math CoProcessor

Interrupt

Number Cause of Interrupt

7 An ESC instruction was encountered when EM or TS of CPU control register zero (CR0) was
set. EM = 1 indicates that software emulation of the instruction is required. When TS is set,
either an ESC or WAIT instruction causes interrupt 7. This indicates that the current Math
CoProcessor context may not belong to the current task.

9 In a protected-mode system, an operand of a coprocessor instruction wrapped around an
addressing limit (OFFFFH for expand-up segments, zero for expand-down segments) and
spanned inaccessible addresses(1). The failing numerics instruction is not restartable. The
address of the failing numerics instruction and data operand may be lost; an FSTENV does not
return reliable addresses. The segment overrun exception should be handled by executing an
FNINIT instruction (i.e., an FINIT without a preceding WAIT). The exception can be avoided by
never allowing numerics operands to cross the end of a segment.

13 In a protected-mode system, the first word of a numeric operand is not entirely within the limit of
its segment. The return address pushed onto the stack of the exception handler points at the
ESC instruction that caused the exception, including any prefixes. The Math CoProcessor has
not executed this instruction; the instruction pointer and data pointer register refer to a previous,
correctly executed instruction.

16 The previous numerics instruction caused an unmasked exception. The address of the faulty
instruction and the address of its operand are stored in the instruction pointer and data pointer
registers. Only ESC and WAIT instructions can cause this interrupt. The CPU return address
pushed onto the stack of the exception handler points to a WAIT or ESC instruction (including
prefixes). This instruction can be restarted after clearing the exception condition in the Math
CoProcessor. FNINIT, FNCLEX, FNSTSW, FNSTENV, and FNSAVE cannot cause this interrupt.

NOTE:

1. An operand may wrap around an addressing limit when the segment limit is near an addressing limit and the operand is
near the largest valid address in the segment. Because of the wrap-around, the beginning and ending addresses of such an
operand will be at opposite ends of the segment. There are two ways that such an operand may also span inaccessible
addresses: 1) if the segment limit is not equal to the addressing limit (e.g. addressing limit is FFFFH and segment limit is
FFFDH) the operand will span addresses that are not within the segment (e.g. an 8-byte operand that starts at valid offset
FFFCH will span addresses FFFC-FFFFH and 0000-0003H; however addresses FFFEH and FFFFH are not valid, because
they exceed the limit); 2) if the operand begins and ends in present and accessible segments but intermediate bytes of the
operand fall in a not-present page or in a segment or page to which the procedure does not have access rights.

Table 3-8. Intel387™T™ SX Math CoProcessor Exceptions

Default Action

overflow/underflow (SF is also set).

Exception Cause (if exception is masked)
Invalid Operation on a signalling NaN, unsupported format, Result is a quiet NaN,
Operation indeterminate for (0-<°, 0/0, (+ o) + (— o0), etc.), or stack integer indefinite, or

BCD indefinte

Denormalized

At least one of the operands is denormalized, i.e., it has the

Normal processing

specified format, and, if underflow exception is masked,
denormalization causes the loss of accuracy.

Operand smallest exponent but a nonzero significand. continues
Zero Divisor The divisor is zero while the dividend is a noninfinite, nonzero Resultis o0
number.
Overflow The result is too large in magnitude to fit in the specified format. | Result is largest finite
value or o
Underflow The true result is nonzero but too small to be represented inthe | Result is denormalized

or zero

Inexact Result
(Precision)

The true result is not exactly representable in the specified
format (e.g. 1/3); the result is rounded according to the rounding
mode.

Normal processing
continues

20

20

intal.

3.6

After FNINIT or RESET, the control word contains
the value 037FH (all exceptions masked, precision
control 64 bits, rounding to nearest) the same values
as in an Intel287 after RESET. For compatibility with
the 8087 and Intel287, the bit that used to indicate
infinity control (bit 12) is set to zero; however, re-
gardless of its setting, infinity is treated in the affine
sense. After FNINIT or RESET, the status word is
initialized as follows:

o All exceptions are set to zero.

e Stack TOP is zero, so that after the first push the
stack top will be register seven (111B).

e The condition code C3—-Cy is undefined.
® The B-bit is zero.

Initialization

The tag word contains FFFFH (all stack locations
are empty).

The Intel386 Microprocessor and Intel387 Math Co-
Processor initialization software must execute a
FNINIT instruction (i.e., FINIT without a preceding
WAIT) after RESET. The FNINIT is not strictly re-
quired for the Intel386 software, but Intel recom-
mends its use to help ensure upware compatibility
with other processors. After a hardware RESET, the
ERROR# output is asserted to indicate that an In-
tel387 Math CoProcessor is present. To accomplish
this, the IE (Invalid Exception) and ES (Error Sum-
mary) bits of the status word are set, and the IM bit
(Invalid Exception Mask) in the control word is
cleared. After FNINIT, the status word and the con-
trol word have the same values as in an Intel287
Math CoProcessor after RESET.

3.7 Processing Modes

The Intel387 SX Math CoProcessor works the same
whether the CPU is executing in real-addressing
mode, protected mode, or virtual-8086 mode. All ref-
erences to memory for numerics data or status infor-
mation are performed by the CPU, and therefore
obey the memory-management and protection rules
of the CPU mode currently in effect. The Intel387 SX
Math CoProcessor merely operates on instruc-

Intel387™ SX MATH COPROCESSOR

tions and values passed to it by the CPU and there-
fore is not sensitive to the processing mode of the
CPU.

The real-address mode and virtual-8086 mode, the
Intel387 SX Math CoProcessor is completely upward
compatible with software for the 8086/8087 and
80286/80287 real-address mode systems.

In protected mode, the Intel387 SX Math CoProces-
sor is completely upward compatible with software
for the 80286/80287 protected mode system.

The only differences of operation that may appear
when 8086/8087 programs are ported to the pro-
tected mode (not using virtual-8086 mode) is in the
format of operands for the administrative instruc-
tions FLDENV, FSTENV, FRSTOR, and FSAVE.

3.8 Programming Support

Using the Intel387 SX Math CoProcessor requires
no special programming tools, because all new in-
structions and data types are directly supported by
the assembler and compilers for high-level lan-
guages. All Intel386 Microprocessor development
tools that support Intel387 Math CoProcessor pro-
grams can also be used to develop software for the
Intel386 SX Microprocessors and Intel387 SX Math
CoProcessors. All 8086/8088 development tools
that support the 8087 can also be used to develop
software for the CPU and Math CoProcessor in real-
address mode or virtual-8086 mode. All 80286 de-
velopment tools that support the Intel287 Math Co-
Processor can also be used to develop software for
the Intel386 CPU and Intel387 Math CoProcessor.

4.0 HARDWARE SYSTEM
INTERFACE

In the following description of hardware interface,
the # symbol at the end of a signal name indicates
that the active or asserted state occurs when the
signal is at a low voltage. When no # is present after
the signal name, the signal is asserted when at the
high voltage level.

21

21

Intel387™ SX MATH COPROCESSOR

4.1 Signal Description

In the following signal descriptions, the Intel387 SX
Math CoProcessor pins are grouped by function as
shown by Table 4-1. Table 4-1 lists every pin by its
identifier, gives a brief description and lists some of
its characteristics (Refer to Figure 1-1 and Table 1-1
for pin configuration).

All output signals can be tri-stated by driving STEN
inactive. The output buffers of the bi-directional data
pins D15-DO0 are also tri-state; they only leave the
floating state during read cycles when the Math Co-
Processor is selected.

4.1.1 Intel386 CPU CLOCK 2 (CPUCLK2)

This input uses the CLK2 signal of the CPU to time
the bus control logic. Several other Math CoProces-
sor signals are referenced to the rising edge of this
signal. When CKM = 1 (synchronous mode) this pin

intal.

also clocks the data interface and control unit and
the floating point unit of the Math CoProcessor. This
pin requires CMOS-level input. The signal on this pin
is divided by two to produce the internal clock signal
CLK.

4.1.2 Intel387 MATH COPROCESSOR CLOCK 2
(NUMCLK2)

When CKM = 0 (asynchronous mode), this pin pro-
vides the clock for the data interface and control unit
and the floating point unit of the Math CoProcessor.
In this case, the ratio of the frequency of NUMCLK2
to the frequency of CPUCLK2 must lie within the
range 10:16 to 14:10 and the maximum frequency
must not exceed the device specifications. When
CKM = 1 (synchronous mode), signals on this pin
are ignored: CPUCLK2 is used instead for the data
interface and control unit and the floating point unit.
This pin requires CMOS level input and should be
tied low if not used.

Table 4-1. Pin Summary

Pin Name Function Active State Input/ Referenced
Output To...
Execution Control
CPUCLK2 Microprocessor Clock2 |
NUMCLK2 Math CoProcessor Clock2 |
CKM Math CoProcessor Clock Mode |
RESETIN System Reset High | CPUCLK2
Math CoProcessor Handshake
PEREQ Processor Request High (0] CPUCLK2
BUSY # Busy Status Low (0] CPUCLK2
ERROR # Error Status Low (0] NUMCLK2
Bus Interface
D15-D0 Data Pins 1/0 CPUCLK2
W/R# Write/Read Bus Cycle High/Low | CPUCLK2
ADS # Address Strobe Low | CPUCLK2
READY # Bus Ready Input Low | CPUCLK2
READYO # Ready Output Low (0] CPUCLK2
Chip/Port Select
STEN Status Enable High | CPUCLK2
NPS1 # Numerics Select # 1 Low | CPUCLK2
NPS2 Numerics Select #2 High | CPUCLK2
CMDO # Command Low | CPUCLK2
Power and Ground
Vee System Power
Vss System Ground

22

22

intal.

4.1.3 CLOCKING MODE (CKM)

This pin is strapping option. When it is strapped to
Vce (HIGH), the Math CoProcessor operates in syn-
chronous mode; when strapped to Vgg (LOW), the
Math CoProcessor operates in asynchronous mode.
These modes relate to clocking of the internal data
interface and control unit and the floating point unit
only; the bus control logic always operates synchro-
nously with respect to the CPU.

Synchronous mode requires the use of only one
clock, the CPU’s CLK2. Use of synchronous mode
eliminates one clock generator from the board
design and is recommended for all designs. Syn-
chronous mode also allows the internal Power Man-
agement Unit to enable the idle and standby power
saving modes.

Asynchronous mode can provide higher perform-
ance of the floating point unit by running a faster
clock on NUMCLK2. (The CPU’s CLK2 must still be
connected to CPUCLK2 input.) This allows the float-
ing point unit to run up to 40% faster than in syn-
chronous mode. Internal power management is dis-
abled in asynchronous mode.

4.1.4 SYSTEM RESET (RESETIN)

A LOW to HIGH transition on this pin causes the
Math CoProcessor to terminate its present activity
and to enter a dormant state. RESETIN must remain
active (HIGH) for at least 40 CPUCLK2 (NUMCLK2 if
CKM = 0) periods.

The HIGH to LOW transitions of RESETIN must be
synchronous with CPUCLK2, so that the phase of
the internal clock of the bus control logic (which is
the CPUCLK2 divided by two) is the same as
the phase of the internal clock of the CPU. After
RESETIN goes LOW, at least 50 CPUCLK2
(NUMCLK?2 if CKM = 0) periods must pass before
the first Math CoProcessor instruction is written into
the Math CoProcessor. This pin should be connect-
ed to the CPU RESET pin. Table 4-2 shows the
status of the output pins during the reset sequence.
After a reset, all output pins return to their inactive
state except for ERROR# which remains active (for
CPU recognition) until cleared.

Table 4-2. Output Pin Status during Reset

Pin Value Pin Name
HIGH READYO#, BUSY #
LOW PEREQ, ERROR #
Tri-State OFF D15-DO

Intel387™ SX MATH COPROCESSOR

4.1.5 PROCESSOR REQUEST (PEREQ)

When active, this pin signals to the CPU that the
Math CoProcessor is ready for data transfer to/from
its data FIFO. When all data is written to or read
from the data FIFO, PEREQ is deactivated. This sig-
nal always goes inactive before BUSY # goes inac-
tive. This signal is reference to CPUCLK2. It should
be connected to the CPU PEREQ input pin.

4.1.6 BUSY STATUS (BUSY #)

When active, this pin signals to the CPU that the
Math CoProcessor is currently executing an instruc-
tion. This signal is referenced to CPUCLK?2. It should
be connected to the CPU BUSY # input pin.

4.1.7 ERROR STATUS (ERROR#)

This pin reflects the ES bit of the status register.
When active, it indicates that an unmasked excep-
tion has occurred. This signal can be changed to the
inactive state only by the following instructions (with-
out a preceding WAIT); FNINIT, FNCLEX,
FNSTENV, FNSAVE, FLDCW, FLDENV, and
FRSTOR. ERROR# is driven active during RESET
to indicate to the CPU that the Math CoProcessor is
present. This pin is referenced to NUMCLK2 (or
CPUCLK2 if CKM = 1). It should be connected to
the ERROR# pin of the CPU.

4.1.8 DATA PINS (D15-D0)

These bi-directional pins are used to transfer data
and opcodes between the CPU and Math CoProces-
sor. They are normally connected directly to the cor-
responding CPU data pins. HIGH state indicates a
value of one. DO is the least significant data bit. Tim-
ings are referenced to rising edge of CPUCLK2.

4.1.9 WRITE/READ BUS CYCLE (W/R#)

This signal indicates to the Math CoProcessor
whether the CPU bus cycle in progress is a read or a
write cycle. This pin should be connected directly to
the CPU’s W/R# pin. HIGH indicates a write cycle
to the Math CoProcessor; LOW a read cycle from
the Math CoProcessor. This input is ignored if any of
the signals STEN, NPS1#, or NPS2 are inactive.
Setup and hold times are referenced to CPUCLK2.

4.1.10 ADDRESS STROBE (ADS #)

This input, in conjunction with the READY # input,
indicates when the Math CoProcessor bus control
logic may sample W/R# and the chip select signals.
Setup and hold times are referenced to CPUCLK2.
This pin should be connected to the ADS# pin of
the CPU.

23

23

Intel387™ SX MATH COPROCESSOR

4.1.11 BUS READY INPUT (READY #)

This input indicates to the Math CoProcessor when
a CPU bus cycle is to be terminated. It is used by the
bus control logic to trace bus activities. Bus cycles
can be extended indefinitely until terminated by
READY #. This input should be connected to the
same signal that drives the CPU’s READY # input.
Setup and hold times are referenced to CPUCLK2.

4.1.12 READY OUTPUT (READYO #)

This pin is activated at such a time that write cycles
are terminated after two clocks (except FLDENV
and FRSTOR) and read cycles after three clocks. In
configurations where no extra wait states are re-
quired, this pin must directly or indirectly drive the
READY # input of the CPU. Refer to the section enti-
tled “BUS OPERATION” for details. This pin is acti-
vated only during bus cycles that select the Math
CoProcessor. This signal is referenced to CPUCLK2.

(FLDENV and FRSTOR require data transfers larger
than the FIFO. Therefore, PEREQ is activated for
the duration of transferring 2 words of 32 bits and
then deactivated until the FIFO is ready to accept
two additional words. The length of the write cycles
of the last operand word in each transfer as well as
the first operand word transfer of the entire instruc-
tion is 3 clocks instead of 2 clocks. This is done to
give the Intel386 CPU enough time to sample
PEREQ and to notice that the Intel387 is not ready
for additional transfers.)

4.1.13 STATUS ENABLE (STEN)

This pin serves as a chip select for the Math Co-
Processor. When inactive, this pin forces BUSY #,
PEREQ, ERROR# and READYO# outputs into a
floating state. D15-D0 are normally floating and will
leave the floating state only if STEN is active and
additional conditions are met (read cycle). STEN
also causes the chip to recognize its other chip se-
lect inputs. STEN makes it easier to do on-board
testing (using the overdrive method) of other chips in
systems containing the Math CoProcessor. STEN
should be pulled up with a resistor so that it can be
pulled down when testing. In boards that do not use
on-board testing STEN should be connected to Vgc.
Setup and hold times are relative to CPUCLK2. Note
that STEN must maintain the same setup and hold
times as NPS1#, NPS2, and CMDO # (i.e., if STEN
changes state during a Math CoProcessor bus cycle,
it must change state during the same CLK period as
the NPS1#, NPS2, and CMDO # signals).

24

intal.

4.1.14 MATH COPROCESSOR SELECT 1
(NPS1#)

When active (along with STEN and NPS2) in the first
period of a CPU bus cycle, this signal indicates that
the purpose of the bus cycle is to communicate with
the Math CoProcessor. This pin should be connect-
ed directly to the M/IO# pin of the CPU, so that the
Math CoProcessor is selected only when the CPU
performs 1/0 cycles. Setup and hold times are refer-
enced to the rising edge of CPUCLK2.

4.1.15 MATH COPROCESSOR SELECT 2
(NPS2)

When active (along with STEN and NPS1#) in the
first period of a CPU bus cycle, this signal indicates
that the purpose of the bus cycle is to communicate
with the Math CoProcessor. This pin should be con-
nected directly to the A23 pin of the CPU, so that the
Math CoProcessor is selected only when the CPU
issues one of the I/0 addresses reserved for the
Math CoProcessor (8000F8h, 8000FCh, or 8000FEh
which is treated as 8000FCh by the Math CoProces-
sor). Setup and hold times are referenced to the ris-
ing edge of CPUCLK2.

4.1.16 COMMAND (CMDO#)

During a write cycle, this signal indicates whether an
opcode (CMDO# active low) or data (CMDO# inac-
tive high) is being sent to the Math CoProcessor.
During a read cycle, it indicates whether the control
or status register (CMDO# active) or a data register
(CMDO0 #) is being read. CMDO # should be connect-
ed directly to the A2 output of the CPU. Setup and
hold times are referenced to the rising edge of
CPUCLK2 at the end of PH2.

4.1.17 SYSTEM POWER (Vcc)

System power provides the +5V DC supply input.
All Vg pins should be tied together on the circuit
board and local decoupling capacitors should be
used between Vg and Vss.

4.1.18 SYSTEM GROUND (Vgs)

System ground provides the OV connection from
which all inputs and outputs are measured. All Vgg
pins should be tied together on the circuit board and
local decoupling capacitors should be used between
Voo and Vss.

24

intal.

4.2 System Configuration

The Intel387 SX Math CoProcessor is designed to
interface with the Intel386 SX Microprocessor as
shown by Figure 4-1. A dedicated communication
protocol makes possible high-speed transfer of op-
codes and operands between the CPU and Math
CoProcessor. The Intel387 SX Math CoProcessor is
designed so that no additional components are re-
quired for interface with the CPU. Most control pins
of the Math CoProcessor are connected directly to
pins of the CPU.

The interface between the Math CoProcessor and
the CPU has these characteristics:

e The Math CoProcessor shares the local bus of
the Intel386 SX Microprocessor.

Intel387™ SX MATH COPROCESSOR

e The CPU and Math CoProcessor share the same
reset signals. They may also share the same
clock input; however, for greatest performance,
an external oscillator may be needed.

e The corresponding Busy#, ERROR#,
PEREQ pins are connected together.

e The Math CoProcessor NPS1# and NPS2 inputs
are connected to the latched CPU M/IO# and
A23 outputs respectively. For Math CoProcessor
cycles, M/IO# is always LOW and A23 always
HIGH.

e The Math CoProcessor input CMDO is connected
to the latched A, output. The Intel386 SX Micro-
processor generates address 8000F8H when
writing a command and address 8000FCH or
8000FEH (treated as 8000FCH by the Intel387
SX Math CoProcessor) when writing or reading
data. It does not generate any other addresses
during Math CoProcessor bus cycles.

and

FROM OTHER PERIPHERALS

N
o]
4
CcLOCK Intel387™ SX MCP CLOCK ¥ R
GENERATOR GENERATOR »] NUMCLK2
CLK2 . (OPTIONAL)
CK = »| cPucLK2
RESET >] RESETIN
»] READY #
F N
< WAIT STATE
¢
GENERATOR [$
4 (OPTIONAL) [¢ READYO#
. Intel387™ SX MCP
Intel386™ SX CPU ntel
RESET D/C# b—>
»| READY # LOCK# p—p
p{CLk2 BHE#,BLE# 72L>
M/10# pINPS 14
—p1 NA# A23 ol Nps2
21
=] HOLD A22-A3, A1 +
—»] INT# A2 »] CMDO#
=1 NMI W/R# Ny
STEN
ADS# pl ADS#
D15-D0 |« 16 »{D15-D0
BUSY# [« BUSY#
ERROR# |« ERROR#
PEREQ |« PEREQ

240225-6

Figure 4-1. Intel386™ SX CPU and Intel387™ SX Math CoProcessor System Configuration

25

25

Intel387™ SX MATH COPROCESSOR

4.3 Math CoProcessor Architecture

As shown in Figure 2-1 Block Diagram, the Intel387
SX Math CoProcessor is internally divided into four
sections; the Bus Control Logic (BCL), the Data In-
terface and Control Logic, the Floating Point Unit
(FPU), and the Power Management Unit (PMU). The
Bus Control Logic is responsible for the CPU bus
tracking and interface. The BCL is the only unit in
the Math CoProcessor that must run synchronously
with the CPU; the rest of the Math CoProcessor can
run asynchronously with respect to the CPU. The
Data Interface and Control Unit is responsible for the
data flow to and from the FPU and the control regis-
ters, for receiving the instructions, decoding them,
sequencing the microinstructions, and for handling
some of the administrative instructions. The Floating
Point Unit (with the support of the control unit which
contains the sequencer and other support units) ex-
ecutes the mathematical instructions. The Power
Manager is new to the Intel387 family. It is responsi-
ble for shutting down idle sections of the device to
save power.

4.3.1 BUS CONTROL LOGIC

The BCL communicates solely with the CPU using
170 bus cycles. The BCL appears to the CPU as a
special peripheral device. It is special in two re-
spects: the CPU initiates 1/0O automatically when it
encounters ESC instructions, and the CPU uses re-
served I/0 addresses to communicate with the BCL.
The BCL does not communicate directly with memo-
ry. The CPU performs all memory access, transfer-
ring input operands from the memory to the Math
CoProcessor and transferring outputs from the Math
CoProcessor to memory.

4.3.2 DATA INTERFACE AND CONTROL UNIT

The data interface and control unit latches the data
and, subject to BCL control, directs the data to the

intal.

FIFO or the instruction decoder. The instruction de-
coder decodes the ESC instructions sent to it by the
CPU and generates controls that direct the data flow
in the FIFO. It also triggers the microinstruction se-
quencer that controls execution of each instruction.
If the ESC instruction is FINIT, FCLEX, FSTSW,
FSTSW AX, FSTCW, FSETPM, or FRSTPM, the
control unit executes it independently of the FPU
and the sequencer. The data interface and control
unit is the unit that generates the BUSY #, PEREQ,
and ERROR# signals that synchronize the Math
CoProcessor activities with the CPU.

4.3.3 FLOATING POINT UNIT

The FPU executes all instructions that involve the
register stack, including arithmetic, logical, transcen-
dental, constant, and data transfer instructions. The
data path in the FPU is 84 bits wide (68 significant
bits, 15 exponent bits, and a sign bit) which allows
internal operand transfers to be performed at very
high speeds.

4.3.4 POWER MANAGEMENT UNIT

The Power Management Unit (PMU) controls all in-
ternal power savings circuits. When the Math Co-
Processor is not executing an instruction, the PMU
disables the internal clock to the FPU, Control Unit,
and Data Interface within three clocks. The Bus
Control Logic remains enabled to accept the next
instruction. Upon decode of a valid Math CoProces-
sor bus cycle, the PMU enables the internal clock to
all circuits. No loss in performance occurs.

4.4 Bus Cycles

All bus cycles are initiated by the CPU. The pins
STEN, NPS1#, NPS2, CMDO, and W/R# identify
bus cycles for the Math CoProcessor. Table 4-3 de-
fines the types of Math CoProcessor bus cycles.

Table 4-3. Bus Cycle Definition

STEN | NPS1# | NPS2 | CMDO# | W/R# Bus Cycle Type
0 X X X X Math CoProcessor not selected and all outputs in floating state
1 1 X X X Math CoProcessor not selected
1 X 0 X X Math CoProcessor not selected
1 0 1 0 0 CW or SW read from Math CoProcessor
1 0 1 0 1 Opcode write to Math CoProcessor
1 0 1 1 0 Data read from Math CoProcessor
1 0 1 1 1 Data write to Math CoProcessor

26

26

intal.

4.4.1 INTEL387 SX MATH COPROCESSOR

ADDRESSING

The NPS1#, NPS2, and CMDO signals allow the
Math CoProcessor to identify which bus cycles are
intended for the Math CoProcessor. The Math Co-
Processor responds to I/0 cycles when the I/0 ad-
dress is 8000F8h, 8000FCh, and 8000FEh (treated
as 8000FCh). The Math CoProcessor responds to
1/0 cycles when bit 23 of the 1/0 address is set. In
other words, the Math CoProcessor acts as an 1/0
device in a reserved |/0 address space.

Because A23 is used to select the Intel387 SX Math
CoProcessor for data transfers, it is not possible for
a program running on the CPU to address the Math
CoProcessor with an 1/0 instruction. Only ESC in-
structions cause the CPU to communicate with the
Math CoProcessor.

4.4.2 CPU/MATH COPROCESSOR
SYNCHRONIZATION

The pins BUSY #, PEREQ, and ERROR # are used
for various aspects of synchronization between the
CPU and the Math CoProcessor.

BUSY # is used to synchronize instruction transfer
from the CPU to the Math CoProcessor. When the
Math CoProcessor recognizes an ESC instruction it
asserts BUSY#. For most ESC instructions, the
CPU waits for the Math CoProcessor to deassert
BUSY # before sending the new opcode.

The Math CoProcessor uses the PEREQ pin of the
CPU to signal that the Math CoProcessor is ready
for data transfer to or from its data FIFO. The Math
CoProcessor does not directly access memory; rath-
er, the CPU provides memory access services for
the Math CoProcessor. (For this reason, memory ac-
cess on behalf of the Math CoProcessor always
obeys the protection rules applicable to the current
CPU mode.) Once the CPU initiates an Math Co-
Processor instruction that has operands, the CPU
waits for PEREQ signals that indicate when the Math
CoProcessor is ready for operand transfer. Once all
operands have been transferred (or if the instruction
has no operands) the CPU continues program exe-
cution while the Math CoProcessor executes the
ESC instruction.

In 8087/8087 systems, WAIT instructions may be
required to achieve synchronization of both com-
mands and operands. In the Intel386 Micropro-
cessor and Intel387 Math CoProcessor systems,
however, WAIT instructions are required only for op-
erand synchronization; namely, after Math CoProc-
essor stores to memory (except FSTSW and
FSTCW) or load from memory. (In 80286/80287
systems, WAIT is required before FLDENV and
FRSTOR.) Used this way, WAIT ensures that the

Intel387™ SX MATH COPROCESSOR

value has already been written or read by the Math
CoProcessor before the CPU reads or changes the
value.

Once it has started to execute a numerics instruction
and has transferred and operands from the CPU, the
Math CoProcessor can process the instruction in
parallel with and independent of the host CPU.
When the Math CoProcessor detects an exception,
it asserts the ERROR # signal, which causes a CPU
interrupt.

4.4.3 SYNCHRONOUS/ASYNCHRONOUS
MODES

The internal logic of the Math CoProcessor can op-
erate either directly from the CPU clock (synchro-
nous mode) or from a separate clock (asynchronous
mode). The two configurations are distinguished by
the CKM pin. In either case, the bus control logic
(BCL) of the Math CoProcessor is synchronized with
the CPU clock. Use of asynchronous mode allows
the BCL and the FPU section of the Math CoProces-
sor to run at different speeds. In this case, the ratio
of the frequency of NUMCLK2 to the frequency of
CPUCLK2 must lie within the range 10:16 to 14:10.
Use of synchronous mode eliminates one clock gen-
erator from the board design. The internal Power
Management Unit of the Intel387 SX Math CoProc-
essor is disabled in asynchronous mode.

4.4.4 AUTOMATIC BUS CYCLE TERMINATION

In configurations where no extra wait states are re-
quired, READYO# can drive the CPU’s READY #
input and the Math CoProcessors READY # input. If
wait states are required, this pin should be connect-
ed to the logic that ORs all READY outputs from
peripheral devices on the CPU bus. READYO# is
asserted by the Math CoProcessor only during 1/0
cycles that select the Math CoProcessor. Refer to
Section 5.0 Bus Operation for details.

5.0 BUS OPERATION

With respect to bus interface, the Intel387 SX Math
CoProcessor is fully synchronous with the CPU.
Both operate at the same rate because each gener-
ates its internal CLK signal by dividing CPUCLK2 by
two. Furthermore, both internal CLK signals are in
phase, because they are synchronized by the same
RESETIN signal.

A bus cycle for the Math CoProcessor starts when
the CPU activates ADS# and drives new values on
the address and cycle definition lines (W/R#,
M/10#, etc.). The Math CoProcessor examines the
address and cycle definition lines in the same CLK
period during which ADS# is activated. This CLK
period is considered the first CLK of the bus cycle.

27

27

Intel387™ SX MATH COPROCESSOR

During this first CLK period, the Math CoProcessor
also examines the W/R# input signal to determine
whether the cycle is a read or a write cycle and ex-
amines the CMDO# input to determine whether an
opcode, operand, or control/status register transfer
is to occur.

The Intel387 SX Math CoProcessor supports both
pipelined (i.e., overlapped) and non-pipelined bus
cycles. A non-pipelined cycle is one for which the
CPU asserts ADS# when no other bus cycle is in
progress. A pipelined bus cycle is one for which the
CPU asserts ADS# and provides valid next address
and control signals before the prior Math CoProces-
sor cycle terminates. The CPU may do this as early
as the second CLK period after asserting ADS# for
the prior cycle. Pipelining increases the availability of
the bus by at least one CLK period. The Intel387 SX
Math CoProcessor supports pipelined bus cycles in
order to optimize address pipelining by the CPU for
memory cycles.

Bus operation is described in terms of an abstract
state machine. Figure 5-1 illustrates the states and
state transitions for Math CoProcessor bus cycles:

e T, is the idle state. This is the state of the bus
logic after RESET, the state to which bus logic
returns after every non-pipelined bus cycle, and
the state to which bus logic returns after a series
of pipelined cycles.

® Trs is the READY # sensitive state. Different
types of bus cycles may require a minimum of
one or two successive Trg states. The bus logic
remains in Trg state until READY # is sensed, at
which point the bus cycle terminates. Any number
of wait states may be implemented by delaying
READY #, thereby causing additional successive
TRs states.

® Tp is the first state for every pipelined bus cycle.
This state is not used by non-pipelined cycles.

Note that the bus logic tracks bus state regardless
of the values on the chip/port select pins. The

ADS#
INACTIVE

READY# ACTIVE
*ADS# ACTIVE

ADS# ACTIVE

"ALWAYS"
READY# ACTIVE
*ADS# INACTIVE

READY# INACTIVE
240225-7

Figure 5-1. Bus State Diagram
28

intal.

READYO# output of the Math CoProcessor indi-
cates when a Math CoProcessor bus cycle may be
terminated if no extra wait states are required. For all
write cycles (except those for the instructions
FLDENV and FRSTOR), READYO# is always as-
serted during the first Trg state, regardless of the
number of wait states. For all read cycles (and write
cycles for FLDENV and FRSTOR), READY # is al-
ways asserted in the second TRrg state, regardless
of the number of wait states. These rules apply to
both pipelined and non-pipelined cycles. Systems
designers may use READYO# in one of the follow-
ing ways:

1. Connect it (directly or through logic that ORs
READY # signals from other devices) to the
READY # inputs of the CPU and Math CoProces-
sor.

2. Use it as one input to a wait-state generator.

The following sections illustrate different types of
Intel387 SX Math CoProcessor bus cycles. Because
different instructions have different amounts of over-
head before, between, and after operand transfer
cycles, it is not possible to represent in a few dia-
grams all of the combinations of successive operand
transfer cycles. The following bus cycle diagrams
show memory cycles between Math CoProcessor
operand transfer cycles. Note however that, during
FRSTOR, some consecutive accesses to the Math
CoProcessor do not have intervening memory ac-
cesses. For the timing relationship between operand
transfer cycles and opcode write or other overhead
activities, see Figure 7-7 “Other Parameters”.

5.1 Non-Pipelined Bus Cycles

Figure 5-2 illustrates bus activity for consecutive
non-pipelined bus cycles.

At the second clock of the bus cycle, the Math Co-
Processor enters the Trg state. During this state, it
samples the READY # input and stays in this state
as long as READY # is inactive.

5.1.1 WRITE CYCLE

In write cycles, the Math CoProcessor drives the
READYO# signal for one CLK period during the
second CLK period of the cycle (i.e., the first Trg
state); therefore, the fastest write cycle takes two
CLK periods (see cycle 2 of Figure 5-2). For the in-
structions FLDENV and FRSTOR, however, the
Math CoProcessor forces wait state by delaying the
activation of READYO# to the second TRrg state
(not shown in Figure 5-2).

The Math CoProcessor samples the D15-DO0 inputs
into data latches at the falling edge of CLK as long
as it stays in Trg state.

intal.

Intel387™ SX MATH COPROCESSOR

CYCLE 2
NON-PIPELINED
Math CoProcessor
WRITE

CYCLE 1
NON-PIPELINED
MEMORY READ
*
T Trs T Tes T

CPUCLK2

L

UL
ViV VeV, Vs /7

CYCLE 3
NON-PIPELINED
Math CoProcessor READ

CYCLE 4
NON-PIPELINED
MEMORY WRITE

Trs Trs T Trs

/S |\S\S]

W/R# \

(CLK)
NPS2, 'z
NPS1#, X
CMD@# 2%
{

ADS#

r/
sy
-~

READYO# \ /

rore | IREXRR | R W | SRR | B

D15-D0 P====o== -<)—(cPU)--Ql--------(c Math)—(cPU)---
oProcessor

Cycles 1 & 2 represent part of the operand transfer cycle for instructions involving either 4-byte or 8-byte operand loads.
Cycles 3 & 4 represent part of the operand transfer cycle for a store operation.
*Cycles 1 & 2 could repeat here or T) states for various non-operand transfer cycles and overhead.

| |
240225-8

Figure 5-2. Non-Pipelined Read and Write Cycles

When READY # is asserted, the Math CoProcessor
returns to the idle state. Simultaneously with the
Math CoProcessor entering the idle state, the CPU
may assert ADS# again, signaling the beginning of
yet another cycle.

5.1.2 READ CYCLE

At the rising edge of CLK in the second CLK period
of the cycle (i.e., the first Trg state), the Math Co-
Processor starts to drive the D15-DO0 outputs and
continues to drive them as long as it stays in Trg
state.

At least one wait state must be inserted to ensure
that the CPU latches the correct data. Because the
Math CoProcessor starts driving the data bus only at
the rising edge of CLK in the second clock period of
the bus cycle, not enough time is left for the data
signals to propagate and be latched by the CPU be-
fore the next falling edge of CLK. Therefore, the
Math CoProcessor does not drive the READYO #

signal until the third CLK period of the cycle. Thus, if
the READYO# output drives the CPU’s READY #
input, one wait state is automatically inserted.

Because one wait state is required for Math CoProc-
essor reads, the minimum length of a Math CoProc-
essor read cycle is three CLK periods, as cycle 3 of
Figure 5-2 shows.

When READY # is asserted, the Math CoProcessor
returns to the idle state. Simultaneously with the
Math CoProcessor’s entering the idle state, the CPU
may assert ADS# again, signaling the beginning of
yet another cycle. The transition from Trg state to
idle state causes the Math CoProcessor to put the
D15-DO0 outputs into the floating state, allowing an-
other device to drive the data bus.

5.2 Pipelined Bus Cycles

Because all the activities of the Math CoProcessor
bus interface occur either during the Trg state or

29

29

Intel387™ SX MATH COPROCESSOR

during the transitions to or from that state, the only
difference between a pipelined and a non-pipelined
cycle is the manner of changing from one state to
another. The exact activities during each state are
detailed in the previous section “Non-pipelined Bus
Cycles”.

When the CPU asserts ADS# before the end of a
bus cycle, both ADS# and READY # are active dur-
ing a TRg state. This condition causes the Math Co-
Processor to change to a different state named Tp.
One clock period after a Tp state, the Math CoProc-
essor always returns to the Trg state. In consecu-
tive pipelined cycles, the Math CoProcessor bus log-
ic uses only the Tgrg and Tp states.

Figure 5-3 shows the fastest transitions into and out
of the pipelined bus cycles. Cycle 1 in the figure rep-
resents a non-pipelined cycle. (Non-pipelined write
are always followed by another non-pipelined cycle,

intal.

because READY # is asserted before the earliest
possible assertion of ADS# for the next cycle.)

Figure 5-4 shows pipelined write and read cycles
with one additional Trg state beyond the minimum
required. To delay the assertion of READY # re-
quires external logic.

5.3 Mixed Bus Cycles

When the Math CoProcessor bus logic is in the Trg
state, it distinguishes between non-pipelined and
pipelined cycles according to the behavior of ADS #
and READY#. In a non-pipelined cycle, only
READY # is activated, and the transition is from the
TRs state to the idle state. In a pipelined cycle, both
READY # and ADS # are active, and the transition is
first from Trg state to Tp state, then, after one clock
period, back to Trg state.

CPUCLK2

(CLK)

NPS2,
NPS1#,
CMD@#

W/R#

ADS#

1L
/]

11
\/

L1
/]

1L
./

11
\/

11
\ /]

L
/]

CYCLE 1 CYCLE 2 CYCLE3 CYCLE 4
NON-PIPELINED PIPELINED PIPELINED NON-PIPELINED
MEMORY READ Math CoProcessor MEMORY READ Math CoProcessor
WRITE WRITE
Trs Trs Te Trs Tp Trs T Trs

11
./

"
/]

T TSE

-

B

K

I/
o TEETRY O R | R
e e O D

)--.

bt

240225-9

Cycle 1-Cycle 4 represent the operand transfer cycle for an instruction involving a transfer of two 32-bit loads in total.
The opcode write cycles and other overhead are not shown.
Note that the next cycle will be a pipelined cycle if both READY # and ADS# are sampled active at the end of a Tgsg
state of the current cycle.

30

Figure 5-3. Fastest Transitions to and from Pipelined Cycles

30

Intel o Intel387™ SX MATH COPROCESSOR

CYCLE 1 NOTE 1 CYCLE 2
PIPELINED WRITE PIPELINED READ
Trs Tp Trs Trs Tp Trs Tp Trs Trs Trs

CPUCLK2

(CLK)

UL
AN

21
¢

NPS2,
NPS1#,
CMD@#

21
¢

Tl

——

W/R#

ADS#

I

3%

/A _/
FRREET | | R, | KRy | TR L B
= —

CcPU)-ib--------------(Math

CoProcessor

READYO#

READY#

= LSS

D15-D0 [MEMORY

240225-10

NOTE:
1. Cycles between operand write to the Math CoProcessor and storing result.

Figure 5-4. Pipelined Cycles with Wait States

31

Intel387™ SX MATH COPROCESSOR |n'te| o

5.4 BUSY# and PEREQ Timing tion upon completion of the instruction. PEREQ is
Relationship activated within this interval. If ERROR # is ever as-

serted, it would be asserted at least six CPUCLK2
Figure 5-5 shows the activation of BUSY# at the periods after the deactivation of PEREQ and would
beginning of instruction execution and its deactiva- ~ be deasserted at least six CPUCLK2 periods before
the deactivation of BUSY #.

ST
OPCODE 15T OPERAND
WRITE NOTE 4 WRITE

e [T UL
S\VAWAWA WA WAWA WA WA WAWAWE WE
o J 2 . & t
oo\ TN \

2% 2% 9% 2%

READY# _J e Js _ T¢ ¢
BUSY# ----l-l ’
2% 2% 2% et

2 2—
o ==y . \,

e e ¢ e

—

NOTE 1 | NOTE 2 NOTE 3 | NOTE 1

NOTES: 240225-11
1. Instruction dependent.

2. PEREQ is an asynchronous input to the Intel386™ Microprocessor; it may not be asserted (instruction dependent).
3. More operand transfers.

4. Memory read (operand) cycle is not shown.

Figure 5-5. STEN, BUSY #, and PEREQ Timing Relationships

32

intel.
6.0 PACKAGE SPECIFICATIONS

6.1 Mechanical Specifications

The Intel387 SX Math CoProcessor is packaged in a
68-pin PLCC package. Detailed mechanical specifi-
cations can be found in the Intel Packaging Specifi-
cation, Order Number 231369.

6.2 Thermal Specifications

The Intel387 SX Math CoProcessor is specified for
operation when the case temperature is within the
range of 0°C to 100°C. The case temperature (Tg)
may be measured in any environment to determine
whether the Intel387 SX Math CoProcessor is within
the specified operating range. The case temperature
should be measured at the center of the top surface.

Intel387™ SX MATH COPROCESSOR

The ambient temperature (T) is guaranteed as long
as Tg is not violated. The ambient temperature can
be calculated from the 0 ¢ (thermal resistance con-
stant from the transistor junction to the case) and
04 (thermal resistance from junction to ambient)
from the following calculations:

Junction Temperature Ty = Tg + P*0,¢
Ambient Temperature Tp = Ty — P*0p
Case Temperature Tg = Ta + P* (8ya — 040)

Values for 6, and 0 c are given in Table 6-1 for the
68 pin PLCC package. 6,c is given at various air-
flows. Table 6-2 shows the maximum Tp allowable
without exceeding T¢ at various airflows. Note that
Ta can be improved further by attaching a heat sink
to the package. P is calculated by using the maxi-
mum hot Igg and maximum Vgg.

Table 6-1. Thermal Resistances (°C/Watt) 6 ¢ and 645

044 versus Airflow - ft/min (m/sec)
Package fuc 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
68-Pin PLCC 8 30 25 20 15.5 13 12
Table 6-2. Maximum Tp at Various Airflows
Ta (°C) versus Airflow - ft/min (m/sec)
Package (] 200 400 600 800 1000
0) (1.01) (2.03) (3.04) (4.06) (5.07)
68-Pin PLCC 84.9 88.3 91.8 94.8 96.6 97.2

Maximum Tp is calculated at maximum Ve and maximum Igc.

7.0 ELECTRICAL CHARACTERISTICS

The following specifications represent the targets of the design effort. They are subject to change without
notice. Contact your Intel representative to get the most up-to-date values.

7.1 Absolute Maximum Ratings*

Case Temperature Tg Under Bias . . .0°C to +100°C
Storage Temperature —65°Cto +150°C

Voltage on Any Pin
with Respectto Ground —0.5to Vgg+0.5

Power Dissipation................. 0.8W

NOTICE: This is a production data sheet. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the “Absolute
Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond the
“Operating Conditions” is not recommended and ex-
tended exposure beyond the “Operating Conditions”
may affect device reliability.

33

33

Intel387™ SX MATH COPROCESSOR

7.2 D.C. Characteristics

intal.

Table 7-1. D.C. Specifications Tc = 0°Cto +100°C, Vg = 5V +£10%

Symbol Parameter Min Max Units Test Conditions
ViL Input LO Voltage —0.3 +0.8 \Y (Note 1)
ViH Input HI Voltage 2.0 Vgc+0.3 \" (Note 1)
VoL CPUCLK2 and NUMCLK2
Input LO Voltage —0.3 +0.8 \
VcH CPUCLK2 and NUMCLK2
Input HI Voltage Vcc—0.8 Voo +0.8 \
VoL Output LO Voltage 0.45 Vv (Note 2)
VoH Output HI Voltage 2.4 \" (Note 3)
VoH Output HI Voltage Vec—0.8 \ (Note 4)
lcc Power Supply Current
Dynamic Mode
Freq. = 33 MHz(5) 150 mA lcc typ. = 135 mA
Freq. = 25 MHz(®) 150 mA Ioc typ. = 130 mA
Freq. = 20 MHz(5) 125 mA Icc typ. = 110 mA
Freq. = 16 MHz(®) 100 mA Icc typ. = 90 mA
Freq. = 1 MHz(®) 20 mA Icc typ. = 5 mA
Idle Mode(6) 7 mA lcc typ. = 4 mA
I Input Leakage Current +15 wA 0V < V|y < Voo
ILo I/0 Leakage Current +15 rA 0.45V < Vo < Vo
CiN Input Capacitance 7 10 pF fc = 1 MHz
Co I/0 Capacitance 7 12 pF fe = 1 MHz
CeoLk Clock Capacitance 7 20 pF fc = 1 MHz

NOTES:
1. This parameter is for all inputs, excluding the clock inputs.
2. This parameter is measured at I as follows:

Data = 4.0 mA

READYO#, ERROR#, BUSY #, PEREQ = 25 mA
3. This parameter is measured at Ipy as follows:

Data = 1.0 mA

READYO#, ERROR#, BUSY #, PEREQ = 0.6 mA
4. This parameter is measured at loy as follows:

Data = 0.2 mA

READYO#, ERROR#, BUSY # PEREQ = 0.12 mA

5. Synchronous Clock Mode (CKM = 1). Igc is measured at steady state, maximum capacitive loading on the outputs, and

worst-case D.C. level at the inputs.

6. Intel387 SX Math CoProcessor Internal Idle Mode. Synchronous clock mode, clock and control inputs are active but the
Math CoProcessor is not executing an instruction. Outputs driving CMOS inputs.

34

34

Intel o Intel387™ SX MATH COPROCESSOR

7.3 A.C. Characteristics

Table 7-2a. Timing Requirements of the Bus Interface Unit
Tc = 0°Cto +100°C, Vgc = 5V +10% (All measurements made at 1.5V unless otherwise specified)

16 MHz- 33 MHz
. 25 MHz Test Refer to
Pin Symbol | Parameter L .
Min | Max | Min | Max Conditions Figure
(ns) | (ns) | (ns) | (ns)
CPUCLK2 1 Period 20 DC 15 DC | 2.0V 7.2
CPUCLK2 t2a High Time 6 6.25 2.0V
CPUCLK2 t2b High Time 3 4.5 Voo —0.8V
CPUCLK2 t3a Low Time 6 6.25 2.0V
CPUCLK2 t3b Low Time 4 4.5 0.8V
CPUCLK2 t4 Fall Time 7 4 From Vgc—0.8V to 0.8V
CPUCLK2 t5 Rise Time 7 4 From 0.8V to Vg —0.8V
READYO # t7a Out Delay 4 25 4 17 | CL = 50 pF 7.3
PEREQ t7b Out Delay 4 23 4 21 CL = 50 pF
BUSY # t7¢c Out Delay 4 23 4 21 CL = 50 pF
ERROR # t7d Out Delay 4 23 4 23 | C_ = 50pF
D15-DO0 8 Out Delay 1 45 0 37 | C_ = 50pF 7.4
D15-D0 t10 Setup Time | 11 8
D15-D0 t11 Hold Time 11 8
D15-D0 t12* Float Time 6 24 6 19
READYO # t13a* Float Time 1 40 1 30 7.6
PEREQ t13b* Float Time 1 40 1 30
BUSY # t13c* Float Time 1 40 1 30
ERROR # t13d* Float Time 1 40 1 30
ADS # t14a Setup Time | 15 13 7.4
ADS # t15a Hold Time 4 4
W/R# t14b Setup Time | 15 13
W/R# t15b Hold Time 4 4
READY # t16a Setup Time 9 7 7.4
READY # t17a Hold Time 4 4
CMDO # t16b Setup Time | 16 13
CMDO # t17b Hold Time 2 2
NPS1#, NPS2 | t16¢c Setup Time | 16 13
NPS1#,NPS2 | t17¢c Hold Time 2 2
STEN t16d Setup Time | 15 13
STEN t17d Hold Time 2 2
RESETIN 118 Setup Time 8 5 7.5
RESETIN t19 Hold Time 3 2
NOTE:

*Float condition occurs when maximum output current becomes less than || o in magnitude. Float delay is not tested.

35

Intel387™ SX MATH COPROCESSOR

intel.

Table 7-2b. Timing Requirements of the Execution Unit (Asynchronous Mode CKM = 0)

16 MHz- 33 MHz
) 25 MHz Test Refer to
Pin Symbol | Parameter L !
Min Max | Min Max Conditions Figure
(ns) (ns) (ns) (ns)
NUMCLK2 t1 Period 20 500 15 500 | 2.0V 7.2
NUMCLK2 t2a High Time 6 6.25 2.0V
NUMCLK2 t2b High Time 3 4.5 Vco—0.8V
NUMCLK2 t3a Low Time 6 6.25 2.0V
NUMCLK2 t3b Low Time 4 4.5 0.8V
NUMCLK2 t4 Fall Time 7 6 From Vgc—0.8V to 0.8V
NUMCLK2 t5 Rise Time 7 6 From 0.8V to Vg —0.8V
NUMCLK2/ Ratio 10/16 | 14/10 | 10/16 | 14/10
CPUCLK2
NOTE:
If not used (CKM = 1) tie NUMCLK2 low.
Table 7-2c. Other A.C. Parameters
Pin Symbol Parameter Min Max Units
RESETIN t30 Duration 40 NUMCLK2
RESETIN 31 RESETIN Inactive to 1st 50 NUMCLK2
Opcode Write
BUSY # t32 Duration CPUCLK2
BUSY #, ERROR # 133 ERROR# (In)Active to CPUCLK2
BUSY # Inactive
PEREQ, ERROR # 134 PEREQ Inactive to 6 CPUCLK2
ERROR# Active
READY #, BUSY # t35 READY # Active to BUSY # 0 4 CPUCLK2
Active
READY # 136 Minimum Time from 4 CPUCLK2
Opcode Write to
Opcode/Operand Write
READY # 137 Minimum Time from 4 CPUCLK2
Operand Write to Operand
Write

36

36

In Intel387™ SX MATH COPROCESSOR

NOM+8 A

NOM+6 ,/

D15-D0
NOM:+4 A

-

NOM+2

READYO#, PEREQ,

NOM BUSY#, ERROR#

NOM-2

NOM—-4
/

NOM-6

TYPICAL* OUTPUT DELAY (nS) @1.5V

25 50 75 100 125 150

LOAD CAPACITANCE, ¢ (pF)
240225-12

NOTE:
*Typical part under worst-case conditions.

Figure 7-1a. Typical Output Valid Delay vs Load Capacitance at Max Operating Temperature

30

s /

20
D15-D0 /
15 /

o

10 / >

D15—D0//
10 64 READYO#, PEREQ, 5 A

/ BUSY#, ERROR# READYO#, PEREQ,
s / BUSY#, ERROR#

0 0 ‘
0 50 100 150 0 50 100 150

LOAD CAPACITANCE, C; (pF) LOAD CAPACITANCE, C, (pF)
240225-13 240225-14

(0.4V - 4.0V)
(0.4V - 4.0V)

TYPICAL* OUTPUT RISE TIME (nS)
TYPICAL* OUTPUT FALL TIME (nS)

NOTE:
*Typical part under worst-case conditions.

Figure 7-1b. Typical Output Slew Time vs Load Capacitance at Max Operating Temperature

150

o / /
) /
Wi

> . ?@*
/ A\c’b

0 5 10 15 20 25
FREQUENCY (MHz)

w
(=]

MAXIMUM I (mA)

0

240225-15

Figure 7-1c. Maximum Icc vs Frequency

37

37

Intel387™ SX MATH COPROCESSOR |n'te| o

VIH/VCH (MIN) VIH/VCH VIH/VCH (MIN)

(MIN)
CPUCLK2/NUMCLK2 top
2.0V 7 2.0V
TZG | T3a
Y
SETUP HOLD
] MIN DELAY " TIME | TIME
1.5V ey 3.0v
INPUTS | ----- ov
MAX DELAY

240225-16

Figure 7-2. CPUCLK2/NUMCLK2 Waveform and Measurement Points for Input/Output

(CLK) (PH2)

CPUCLK2

—t; MAX

[ty MIN->1
S .+ -

(OUTPUTS)

(ERROR# REFERENCED TO NUMCLK2)

240225-17

Figure 7-3. Output Signals

38

IntQI o Intel387™ SX MATH COPROCESSOR

(CLK) (PH1) (PH2) (PH1) (PH2)

2.0v Z 2.0v

NOTE:
The second internal processor phase following RESET high to low transition is PH2.

CPUCLK2
Y4a —
[Ysq ‘
ADS# \ i/
Y5 —>|
W/R# X X
| [1,
NPS1#, NPS2, I Yo > 17]
STEN, XX)+ d
CMDO# |
M= t7a =] [tsa —* Y70 >
READY# X X
Yo =14
b1s-00 <|+:*|>—
(INPUT)
tg MAX
tg MIN i Y2
D15-D0
A r—
OUTPUT
() ! I 240225-18
Figure 7-4. Input and 1/0 Signals
(CLK) (PH1 or PH2) (PH1 or PH2)
CPUCLK2
SE e I
RESET | ANRRRNAN
240225-19

Figure 7-5. RESET Signal

39

39

Intel387™ SX MATH COPROCESSOR |n'te| o

STEN __/_
L—Hs—’ L—Hs ‘“‘

o —— c—

BUSY#, ERROR#, READYO#

240225-20

Figure 7-6. Float from STEN

* %

e [T LTI UL LA
S WAWAWAWAWAWAWAWA WA WA WA WA W
|;ES—ET§0——| t5 5 57 Klng pak iy
-/-ﬁ__\-—s: {5 {5t {5 {5 o S

5 {

= 5= § 5=t = § {5
ADS# \ \ \
=55 { § =5 ! { st
READY# _/ J
=l 45
BUSY# \ ’
L [L G [¢ [C 'y
s 37 ER] 27 J
§ 5 {
PEREQ
=55 5 ! § et
!

=5 5§ =i 5 5 {
ERROR# \
—SS—

t35 t32

240225-21

*In NUMCLK2’s
**or last operand

NOTE:
1. Memory read (operand) cycle is not shown.

Figure 7-7. Other Parameters

40

intal.

8.0 INTEL387 SX MATH
COPROCESSOR INSTRUCTION
SET

Instructions for the Intel387 SX Math CoProcessor
assume one of the five forms shown in Table 8-1. In
all cases, instructions are at least two bytes long and
begin with the bit pattern 11011B, which identifies
the ESCAPE class of instruction. Instructions that
refer to memory operands specify addresses using
the CPU’s addressing modes.

MOD (Mode field) and R/M (Register/Memory spec-
ifier) have the same interpretation as the corre-
sponding fields of CPU instructions (refer to Pro-

Intel387™ SX MATH COPROCESSOR

grammer’s Reference Manual for the CPU). SIB
(Scale Index Base) byte and DISP (displacement)
are optionally present in instructions that have MOD
and R/M fields. Their presence depends on the val-
ues of MOD and R/M, as for instructions of the CPU.

The instruction summaries that follow in Table 8-2
assume that the instruction has been prefetched,
decoded, and is ready for execution; that bus cycles
do not require wait states; that there are no local bus
HOLD requests delaying processor access to the
bus; and that no exceptions are detected during in-
struction execution. If the instruction has MOD and
R/M fields that call for both base and index regis-
ters, add one clock.

Table 8-1. Instruction Formats

Instruction Optional
First Byte Second Byte Fields
1 11011 OPA 1 MOD 1 OPB R/M SIB DISP
2 11011 MF OPA MOD oPB* R/M SIB DISP
3 11011 P OPA 1 1 oPB* ST()
4 11011 0 1 1 1 1 oP
5 11011 1 1 1 1 1 op
15-11 10 9 8 7 6 5 43210

OP = Instruction opcode, possibly split into two fields OPA and OPB

MF = Memory Format
00 - 32-bit real
01 - 32-bit integer
10 - 64-bit real
11 - 16-bit integer
d = Destination
0 - Destination is ST(0)
1 - Destination is ST(i)
R XOR d = 0 - Destination (op) Source
R XOR d = 1 - Source (op) Destination
*In FSUB and FDIV, the low-order bit of OPB is the R (reversed) bit
P = POP
0 - Do not pop stack
1 - Pop stack after operation
ESC = 11011
ST(i) = Register stack element i
000 = Stack top
001 = Second stack element
L]
L]
L]

111 = Eighth stack element

41

Intel387™ SX MATH COPROCESSOR |n'te| o

Encoding Clock Count Range
sreo | et | gmome | REr| een T ewsu | emn
DATA TRANSFER
FLD = Loada
Integer/real memory to ST(0) [ESCMF1 [MODO000OR/M [SIB/DISP | 11-20 28-44 20-27 42-53
Long integer memory to ST(0) [Esc111 [mMoD101R/M [SIB/DISP | 30-58
Extended real memory to ST(0) | Escot1 | moD101R/M [SiB/DISP | 16-47
BCD memory to ST(0) [Esc111 | mMOD100R/M [SIB/DISP | 49-101
ST(i) to ST(0) [ESC 001 [11000ST() | 7-12
FST = Store
ST(0) to integer/real memory | EscmMF1 | MODO10R/M | SIB/DISP | 27-45 59-78 59 58-76
ST(0) to ST(i) [Esc1o1 [11010ST() | 7-11
FSTP = Store and Pop
ST(0) to integer/real memory | ESCMF1 | MODO11R/M | SIB/DISP | 27-45 59-78 59 58-76
ST(0) to long integer memory [Esc111 [mMOD111R/M | sSiB/DISP | 64-86
ST(0) to extended real memory [Escot1 | MOD111R/M [SIB/DISP | 50-56
ST(0) to BCD memory [Esc111 [MOD110R/M [SIB/DISP | 116-194
ST(0) to ST(i) [Escto1 [11011ST() | 7-11
FXCH = Exchange
ST(i) and ST(0) [Escoot [11001ST() | 10-17
COMPARISON
FCOM = Compare
Integer/real memory to ST(0) | Eescmro [mopotom/M | siB/DISP | 15-27 36-54 18-31 39-62
ST(i) to ST(0) | Escooo | 11010sT) | 13-21
FCOMP = Compare and pop
Integer/real memory to ST(0) | EscmFo | mobot1R/M | siB/DISP | 15-27 36-54 18-31 39-62
ST(i) to ST(0) | Escooo | t1o11sTi) | 13-21
FCOMPP = Compare and pop twice
ST(1) to ST(0) [Esciio | 11011001 | 13-21
FTST = Test ST(0) [Escoot [11100100] 17-25
FUCOM = Unordered compare [Escior [11100s10) | 13-21
FUCOMP = Unordered compare
and pop | Escior | 11io1sT) | 13-21
FUCOMPP = Unordered compare
and pop twice [Escoto | 11101001 | 13-21
FXAM = Examine ST(0) | Escoot | 11100101 | 2437

Shaded areas indicate instructions not available in 8087/80287.

NOTE:
a. When loading single or double precision zero from memory, add 5 clocks.

42

|n . Intel387™ SX MATH COPROCESSOR
Encoding Clock Count Range
Instruction Optional 32-Bit 32-Bit 64-Bit 16-Bit
Byte 0 Byte 1 Bytes 2-6 Real Integer Real Integer
ARITHMETIC
FADD = Add
Integer/real memory to ST(0) | escmrFo | mobooor/M | siB/DISP | 14-31 36-58 19-38 38-64
ST(j) and ST(0) | Escdpo | t1ooosti) | se/oisp | 12-26b

FSUB = Subtract

Integer/real memory with ST(0) | EscmFo [MoD1oRR/M | siB/DISP | 14-31 36-58 19-38 38-64c

ST(i) to ST(0) | Escdpo | 1110RR/M | 12-26d

FMUL = Multiply

Integer/real memory with ST(0) | Eescmro [mopootmr/M | siB/DiSP 21-83 45-73 27-57 46-74

ST(j) and ST(0) | Escdpo | t1001R/M] 17-508
FDIV = Divide

Integer/real memory with ST(0) | EescmFo [MoD11RR/M | siB/DISP 79-87 103-116f 85-95 105-1249

ST(j) and ST(0) | Escdpo | 1111RR/M | 77-80h
FSQRTI = Square root [Escoor [11111010 | 97-111
FSCALE = Scale ST(0) by ST(1) | Escoot | 11111101 | 44-82
FPREM = Partial remainder | Escoor [11111000 | 56-140
FPREM1 = Partial remainder (EEE) | ESCO001 | 11110101 | 81-168
FRNDINT = Round ST() tointeger | ESCO001 | 11111100 | 41-62
FXTRACT = Extract components

of ST(0) [Escoor | 11110100 | 42-63
FABS = Absolute value of ST(0) | Escoot | 11100001 | 14-21
FCHS = Change sign of ST(0) | Escoot | 11100000 | 17-24
TRANSCENDENTAL
FCOSk = Cosine of ST(0) [Escoor [1111111] 122-680
FPTANK = Partial tangent of ST(0) [Escoor [11110010] 162-430i
FPATAN = Partial arctangentof ST0) | ESC001 | 11110011 | 250-420
FSINK = Sine of ST(0) [Escoor [11111110] 121-680
FSINCOSk = Sine and cosine of ST(0) | ESC001 | 11111011 | 150-650
F2XM1l = 25T — 1 | Escoot | 11110000 | 167-410
FYL2XM = ST(1) * logzST(0) | Escoot | 11110001 | 99-436
FYL2XP1n = ST(1) * loga[ST(0) + 1.01 | ESC001 | 11111001 | 210-447

Shaded areas indicate instructions not available in 8087/80287.

NOTES:

b. Add 3 clocks to the range when d = 1.

c. Add 1 clock to each range when R = 1.

d. Add 3 clocks to the range when d = 0.

e. typical = 52 (When d = 0, 46-54, typical = 49).

f. Add 1 clock to the range when R = 1.

g. 135-141 when R = 1.

h. Add 3 clocks to the range whend = 1.

i. =0 < ST(0) < + 0.

j. These timings hold for operands in the range |x| < 7. For operands not in this range, up to 76 additional clocks may be
needed to reduce the operand.

k.0 < ST(0) < 263,

. —1.0 < ST(0) < 1.0.

m. 0 < ST(0) < o, —o0 < ST(1) < + o0,

n. 0 < |ST(0)| < [2-SQRT(2)1/2, — o <ST(1) < + oo,

43

Intel387™ SX MATH COPROCESSOR

intel.

Encoding Clock Count Range

oper | mer | g | amn | seon | emn [em
CONSTANTS
FLDZ = Load +0.0 to ST(0) [Escoor | 11101110 | 10-17
FLD1 = Load +1.0 to ST(0) | Escoot | 11101000 | 15-22
FLDPI = Load m to ST(0) | Escoot | 11101011 | 26-36
FLDL2T = Load log,(10) to ST(0) | Escoot | 11101001 | 26-36
FLDL2E = Load logp(e) to ST(0) | Escoot | 11101010 | 26-36
FLDLG2 = Load log1(2) to ST(0) | Escoot | 11101100 | 25-35
FLDLN2 = Load loge(2) to ST(0) | Escoor | 11101101 | 26-38
PROCESSOR CONTROL
FINIT = Initialize Math CoProcessor | ESCO11___| 11100011 | 33
FLDCW = Load control word from memory | ESC 001 MOD101R/M | sIB/DISP | 19
FSTCW = Store control word tomemory | ESGC 001 MOD111R/M | sSIB/DISP | 15
FSTSW = Store statuswordtomemory | ESC101 | MOD111R/M | SIB/DISP | 15
FSTSW AX = Storestatuswordto AX | ESC111 | 11100000 | 13
FCLEX = Clear exceptions | Escott | 11100010 | 11
FSTENV = Store environment | Escoot [mobitor/m [siB/pisP | 117-118
FLDENV = Load environment | Escoot [mop1oom/M | siB/pisP | 85
FSAVE = Save state | Escio1 [mopitomr/M | siB/pisP | 402-403
FRSTOR = Restore state | Escio1 [mop1oomr/M | siB/DisP | 415
FINCSTP = Increment stack pointer | ESC001 | 11110111 | 21
FDECSTP = Decrement stack pointer | ESC001 | 11110110 | 22
FFREE = Free ST(j) | Escior | 11000sTi) | 18
FNOP = No operations | Escoot | 11010000 | 12

44

44

IntQI o Intel387™ SX MATH COPROCESSOR

APPENDIX A
INTEL387 SX MATH COPROCESSOR
COMPATIBILITY

A.1 8087/80287 Compatibility

This section summarizes the differences between the Intel387 SX Math CoProcessor and the 80287 Math
CoProcessor. Any migration from the 8087 directly to the Intel387 SX Math CoProcessor must also take into
account the differences between the 8087 and the 80287 Math CoProcessor as listed in Appendix B.

Many changes have been designed into the Intel387 SX Math CoProcessor to directly support the |IEEE
standard in hardware. These changes result in increased performance by eliminating the need for software
that supports the standard.

A.1.1 GENERAL DIFFERENCES

The Intel387 SX Math CoProcessor supports only affine closure for infinity arithmetic, not projective closure.

Operands for FSCALE and FPATAN are no longer restricted in range (except for + o0); F2XM1 and FPTAN
accept a wider range of operands.

Rounding control is in effect for FLD constant.

Software cannot change entries of the tag word to values (other than empty) that differ from actual register
contents.

After reset, FINIT, and incomplete FPREM, the Intel387 SX Math CoProcessor resets to zero the condition
code bits C3-Cq of the status word.

In conformance with the IEEE standard, the Intel387 SX Math CoProcessor does not support the special data
formats pseudo-zero, pseudo-NaN, pseudo-infinity, and unnormal.

The denormal exception has a different purpose on the Intel387 SX Math CoProcessor. A system that uses the
denormal exception handler solely to normalize the denormal operands, would better mask the denormal
exception on the Intel387 SX Math CoProcessor. The Intel387 SX Math CoProcessor automatically normalizes
denormal operands when the denormal exception is masked.

45

Intel387™ SX MATH COPROCESSOR |n'te| o

A.1.

2 EXCEPTIONS

A number of differences exist due to changes in the IEEE standard and to functional improvements to the
architecture of the Intel387 SX Math CoProcessor:

1.

10.
11.

12.

13.

14.

15.

When the overflow or underflow exception is masked, the Intel387 SX Math CoProcessor differs from the
80287 in rounding when overflow or underflow occurs. The Intel387 SX Math CoProcessor produces
results that are consistent with the rounding mode.

. When the underflow exception is masked, the Intel387 SX Math CoProcessor sets its underflow flag only if

there is also a loss of accuracy during denormalization.

. Fewer invalid-operations exceptions due to denormal operand, because the instructions FSQRT, FDIV,

FPREM, and conversions to BCD or to integer normalize denormal operands before proceeding.

. The FSQRT, FBSTP, and FPREM instructions may cause underflow, because they support denormal

operands.

. The denormal exception can occur during the transcendental instruction and the FXTRACT instruction.
. The denormal exception no longer takes precedence over all other exceptions.
. When the denormal exception is masked, the Intel387 SX Math CoProcessor automatically normalizes

denormal operands. The 8087/80287 performs unnormal arithmetic, which might produce an unnormal
result.

. When the operand is zero, the FXTRACT instruction reports a zero-divide exception and leaves — o in

ST(1).

. The status word has a new bit (SF) that signals when invalid-operation exceptions are due to stack

underflow or overflow.
FLD extended precision no longer reports denormal exceptions, because the instruction is not numeric.

FLD single/double precision when the operand is denormal converts the number to extended precision
and signals the denormal operand exception. When loading a signaling NaN, FLD single/double precision
signals an invalid-operation exception.

The Intel387 SX Math CoProcessor only generates quiet NaNs (as on the 80287); however, the Intel387
SX Math CoProcessor distinguishes between quiet NaNs and signaling NaNs. Signaling NaNs trigger
exceptions when they are used as operands; quiet NaNs do not (except for FCOM, FIST, and FBSTP
which also raise |E for quiet NaNs).

When stack overflow occurs during FPTAN and overflow is masked, both ST(0) and ST(1) contain quiet
NaNs. The 80287/8087 leaves the original operand in ST(1) intact.

When the scaling factor is + o0, the FSCALE instruction behaves as follows:

e FSCALE (0, o) generates the invalid operation exception.

® FSCALE (finite, — o) generates zero with the same sign as the scaled operand.
e FSCALE (finite, + %) generates o with the same sign as the scaled operand.

The 8087/80287 returns zero in the first case and raises the invalid-operation exception in the other
cases.

The Intel387 SX Math CoProcessor returns signed infinity/zero as the unmasked response to massive
overflow/underflow. The 8087 and 80287 support a limited range for the scaling factor; within this range
either massive overflow/underflow do not occur or undefined results are produced.

46

IntQI o Intel387™ SX MATH COPROCESSOR

APPENDIX B
COMPATIBILITY BETWEEN THE 80287
AND 8087 MATH COPROCESSOR

The 80286/80287 operating in Real Address mode will execute 8086/8087 programs without major modifica-
tion. However, because of differences in the handling of numeric exceptions by the 80287 Math CoProcessor
and the 8087 Math CoProcessor, exception handling routines may need to be changed. This appendix summa-
rizes the differences between the 80287 Math CoProcessor and the 8087 Math CoProcessor, and provides
details showing how 8087/8087 programs can be ported to the 80286/80287.

1.

The Math CoProcessor signals exceptions through a dedicated ERROR# line to the 80286. The Math
CoProcessor error signal does not pass through an interrupt controller (the 8087 INT signal does). There-
fore, any interrupt controller oriented instructions in numeric exception handlers for the 8086/8087 should
be deleted.

. The 8087 instructions FENI and FDISI perform no useful function in the 80287. If the 80287 encounters one

of these opcodes in its instruction stream, the instruction will effectively be ignored; none of the 80287
internal states will be updated. While 8086/8087 programs containing the instruction may be executed on
the 80286/80287, it is unlikely that the exception handling routines containing these instructions will be
completely portable to the 80287.

. Interrupt vector 16 must point to the numeric exception handling routine.

4. The ESC instruction address saved in the 80287 includes any leading prefixes before the ESC opcode. The

corresponding address saved in the 8087 does not include leading prefixes.

. In Protected Address mode, the format of the 80287’s saved instruction and address pointers is different

than for the 8087. The instruction opcode is not saved in Protected mode; exception handlers will have to
retrieve the opcode from memory if needed.

. Interrupt 7 will occur in the 80286 when executing ESC instructions with either TS (task switched) or EM

(emulation) of the 80286 MSW set (TS = 1 or EM = 1). It TS is set, then a WAIT instruction will also cause
interrupt 7. An exception handler should be included in 80286/80287 code to handle these situations.

. Interrupt 9 will occur if the second or subsequent words of a floating point operand fall outside a segment’s

size. Interrupt 13 will occur if the starting address of a numeric operand falls outside a segment’s size. An
exception handler should be included in 80286/80287 code to report these programming errors.

. Except for the processor control instructions, all of the 80287 numeric instructions are automatically syn-

chronized by the 80286 CPU; the 80286 CPU automatically tests the BUSY # line from the 80287 to ensure
that the 80287 has completed its previous instruction before executing the next ESC instruction. No explicit
WAIT instructions are required to assure this synchronization. For the 8087 used witth 8086 and 8088
processors, explicit WAITs are required before each numeric instruction to ensure synchronization. Al-
though 8086/8087 programs having explicit WAIT instructions will execute perfectly on the 80286/80287
without reassembly, these WAIT instructions are unnecessary.

. Since the 80287 does not require WAIT instructions before each numeric instruction, the ASM286 assem-

bler does not automatically generate these WAIT instuctions. The ASM86 assembler, however, automati-
cally precedes every ESC instruction with a WAIT instruction. Although numeric routines generated using
the ASM86 assembler will generally execute correctly on the 80286/80287, reassembly using ASM286
may result in a more compact code image.

The processor control instructions for the 80287 may be coded using either a WAIT or No-WAIT form of
mnemonic. The WAIT forms of these instructions cause ASM286 to precede the ESC instructions with a CPU
WAIT instruction, in the identical manner as does ASM86.

47

