
IP1842 SERIES
IP1843 SERIES

TOP VIEW

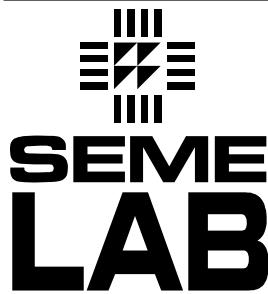
J Package – 8 Pin Ceramic DIP
N Package – 8 Pin Plastic DIP
D-8 Package – 8 Pin Plastic (150) SOIC

TOP VIEW

D-14 Package – 14 Pin Plastic (150) SOIC

CURRENT MODE
REGULATING
PULSE WIDTH
MODULATORS

FEATURES


- Guaranteed $\pm 1\%$ reference voltage tolerance
- Guaranteed $\pm 10\%$ frequency tolerance
- Low start-up current ($< 500 \mu\text{A}$)
- Under voltage lockout with hysteresis
- Output state completely defined for all supply and input conditions
- Interchangeable with UC1842 and UC1843 series for improved operation
- 500kHz operation

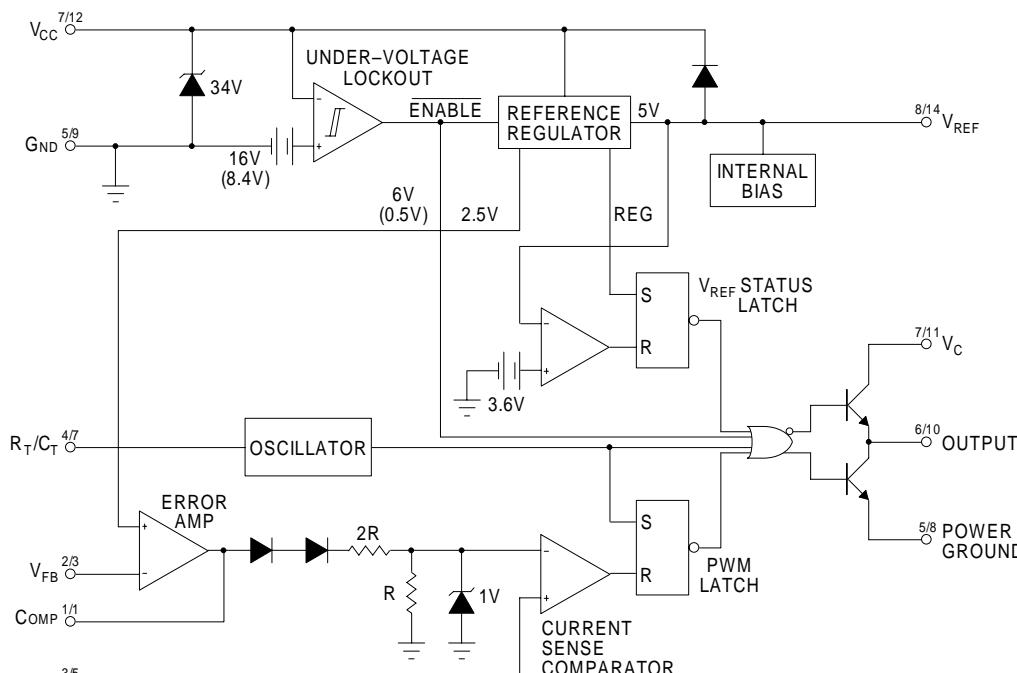
Order Information

Part Number	J-Pack 8 Pin	N-Pack 8 Pin	D-8 8 Pin	D-14 14 Pin	Temp. Range	Note:
IP1842	✓				-55 to +125°C	To order, add the package identifier to the part number.
IP2842	✓	✓	✓	✓	-25 to +85°C	
IP3842	✓	✓	✓	✓	0 to +70°C	
IP1843	✓				-55 to +125°C	eg. IP1842J
IP2843	✓	✓	✓	✓	-25 to +85°C	IP3843D-14
IP3843	✓	✓	✓	✓	0 to +70°C	

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^\circ\text{C}$ unless otherwise stated)

V_{CC}	Supply Voltage (low impedance source) ($ I_{CC} < 30\text{mA}$)	+30V Self limiting
I_O	Output Current Output Energy (capacitive load)	$\pm 1\text{A}$ 5 μJ
	Analog Inputs (pins 2 and 3)	-0.3V to + V_{CC}
	Error Amp Output Sink Current	10mA
P_D	Power Dissipation Derate @ $T_{amb} > 50^\circ\text{C}$	1W 10mW/ $^\circ\text{C}$
	Power Dissipation Derate @ $T_{case} > 25^\circ\text{C}$	2W 24mW/ $^\circ\text{C}$
	Storage Temperature Range	-65 to 150°C
	Lead Temperature (soldering, 10 seconds)	+300°C

IP1842 SERIES


IP1843 SERIES

DESCRIPTION

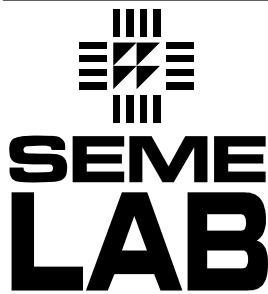
The IP1842 and IP1843 series of switching regulator control circuits contain all the functions necessary to implement off-line, current mode switching regulators, using a minimum number of external parts. Functions included are voltage reference, error amplifier, current sense comparator, oscillator, totem pole output driver and under-voltage lockout circuitry.

Although pin compatible with the UC1842 and 1843 series, SEMELAB has incorporated several improvements in the IP1842 and IP1843 series allowing tighter and more complete specification of electrical performance.

BLOCK DIAGRAM

Values in brackets are for IP1843 series.

PIN NUMBERS


RECOMMENDED OPERATING CONDITIONS

V_{CC}	Supply Voltage ¹	$\leq 30V$
I_O	Output Current	0 to $\pm 200mA$
	Analog Inputs (pins 2 and 3)	-0.3V to 3V
	Error Amp Output Sink Current	0 to 2mA
		IP1842 , IP1843
	Operating Ambient Temperature Range	-55 to 125°C
		IP2842 , IP2843
		-25 to 85°C
		IP3842 , IP3843
		0 to 70°C

Notes:

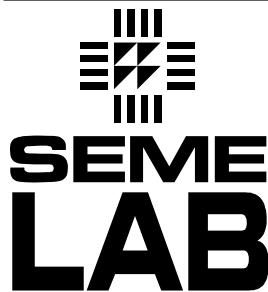
1. Lower limit set by under voltage lockout specification.

IP1842 SERIES

IP1843 SERIES

ELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range unless otherwise stated)

Parameter	Test Conditions	IP1842/IP1843			IP3842 IP3843			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
REFERENCE SECTION								
Output Voltage	$I_O = 1\text{mA}$ $T_J = 25^\circ\text{C}$	4.95	5.00	5.05	4.90	5.00	5.10	V
Input Regulation	$V_{CC} = 12\text{V}$ to 25V	6	20	6	20	6	20	mV
Output Regulation	$I_O = 1\text{mA}$ to 20mA		25					
Temperature Stability		0.2	0.4	0.2	0.4	0.2	0.4	$\text{mV}/^\circ\text{C}$
Total Output Variation	Line, Load, Temp		4.90	5.10	4.82	5.18	5.18	V
Output Noise Voltage	$f = 10\text{Hz}$ to 10kHz $T_J = 25^\circ\text{C}$	50		50	50	50	μV	
Long Term Stability	$T_J = 125^\circ\text{C}$ @ 1000Hrs		5	25				
Output Short Circuit Current	$V_{REF} = 0$	30	80	160	30	80	160	mA
OSCILLATOR SECTION								
Frequency	$T_J = 25^\circ\text{C}$	47	52	57	47	52	57	kHz
Voltage stability	$V_{CC} = 12\text{V}$ to 25V	0.2	1	5	5	5	1	%
Temperature Stability	$\Delta T_A = \text{Min to Max}$							
Amplitude	V_{PIN4} Peak to Peak	1.7		1.7	1.7	1.7	1.7	V
Discharge Current	$T_J = 25^\circ\text{C}$		8.3					
	$\Delta T_A = \text{Min to Max}$		8					
ERROR AMP SECTION								
Input Voltage	$V_{PIN1} = 2.5\text{V}$	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Bias Current		-0.3	-1	65	90	65	90	μA
Open Loop Voltage Gain	$V_O = 2\text{V}$ to 4V							
Unity Gain Bandwidth		0.7	1	0.7	1	0.7	1	MHz
Supply Voltage Rejection	$V_{CC} = 12\text{V}$ to 25V	60	70					
Output Sink Current	$V_{PIN2} = 2.7\text{V}$ $V_{PIN1} = 1.1\text{V}$	2	6	-0.5	-0.8	2	6	mA
Output Source Current	$V_{PIN2} = 2.3\text{V}$ $V_{PIN1} = 4.6\text{V}$	-0.5	-0.8					
V_{OUT} High	$V_{PIN2} = 2.3\text{V}$ $R_L = 15\text{k}\Omega$	4.6	4.8	4.6	4.8	4.6	4.8	V
V_{OUT} Low	$V_{PIN2} = 2.7\text{V}$ $R_L = 15\text{k}\Omega$	0.7	1.1					


NOTES

- Test Conditions unless otherwise stated:

$V_{CC} = 15\text{V}^*$, $R_T = 10\text{k}\Omega$, $C_T = 3.3\text{nF}$, $f = 52\text{kHz}$.

*Adjust V_{CC} above start threshold before setting at required level.

All specifications apply over the full operating temperature range unless otherwise stated. (See Ordering Information for further details).

IP1842 SERIES

IP1843 SERIES

ELECTRICAL CHARACTERISTICS (Over Full Operating Temperature Range unless otherwise stated)

Parameter	Test Conditions	IP1842/IP1843			IP3842			Units	
		Min.	Typ.	Max.	Min.	Typ.	Max.		
CURRENT SENSE SECTION									
Gain	See Notes 2,3	2.85	3	3.15	2.85	3	3.15	V/V	
Maximum Input Signal	$V_{PIN1} = 4.6V$ (Note 2)	0.9	1	1.1	0.9	1	1.1	V	
Supply Voltage Rejection	$V_C = 12V$ to $25V$	60	70		60	70		dB	
Input Bias Current			-2	-10		-2	-10	μA	
Delay to Output			200	400		200	400	ns	
OUTPUT SECTION									
Output Low Level	$I_{SINK} = 20mA$		0.1	0.4		0.1	0.4	V	
	$I_{SINK} = 200mA$		1.5	2.2		1.5	2.2		
Output High Level	$I_{SOURCE} = 20mA$	13	13.5		13	13.5		V	
	$I_{SOURCE} = 200mA$	12	13.5		12	13.5			
Rise Time	$C_L = 1nF$ $T_J = 25^\circ C$		50	150		50	150	ns	
Fall Time	$C_L = 1nF$ $T_J = 25^\circ C$		50	150		50	150		
UVLO Saturation	$V_{CC} = 6V$ $I_L = 1mA$		0.7	1.1		0.7	1.1	V	
UNDER-VOLTAGE LOCKOUT SECTION									
Upper Threshold (V_{CC})	1842 Series		15	16	17	14.5	16	17.5	V
	1843 Series		7.8	8.4	9	7.8	8.4	9	
Lower Threshold (V_{CC})	1842 Series		9	10	11	8.5	10	11.5	V
	1843 Series		7	7.6	8.2	7	7.6	8.2	
TOTAL STANDBY CURRENT									
Start-up Current			0.3	0.5		0.3	0.5	mA	
Operating Supply Current	$V_{PIN2} = 0V$	1842 Series		11	15		11	15	mA
	$V_{PIN3} = 0V$	1843 Series		14	17		14	17	
V_{CC} Zener Voltage	$I_{CC} = 25mA$		30	34	40	30	34	40	V

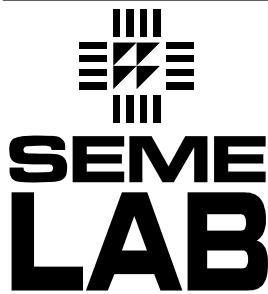
NOTES

1. Test Conditions unless otherwise stated:

$V_{CC} = 15V^*$, $R_T = 10k\Omega$, $C_T = 3.3nF$, $f = 52kHz$.

*Adjust V_{CC} above start threshold before setting at required level.

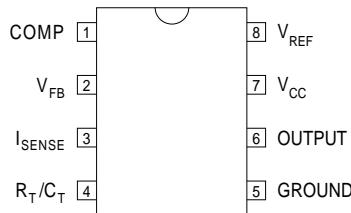
All specifications apply over the full operating temperature range unless otherwise stated.


(See Ordering Information for further details).

2. Parameter measured at trip point of latch with $V_{PIN2} = 0V$

3. Gain defined as:

$$A = \frac{\Delta V_{PIN1}}{\Delta V_{PIN3}}$$


$$0 \leq V_{PIN3} \leq 0.8$$

IP1842 SERIES
IP1843 SERIES

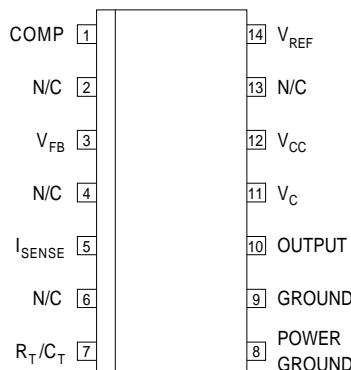
APPLICATIONS INFORMATION

Oscillator Waveforms and Maximum Duty Cycle

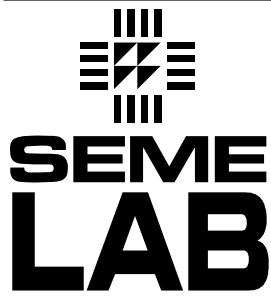
Oscillator timing capacitor C_T is charged by V_{REF} through R_T and discharged by an internal current source.

During the discharge time, the internal clock signal blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are determined by the formulae:

$$t_c \approx 0.55 R_T C_T$$

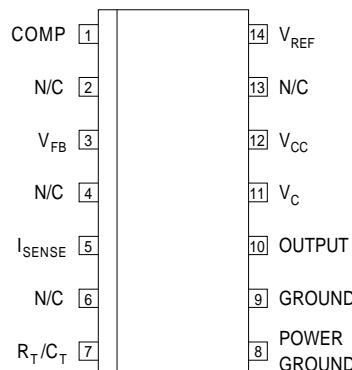
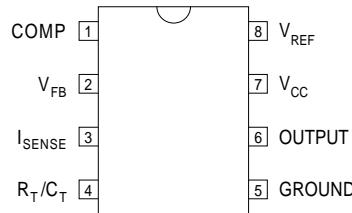

For $R_T > 5k\Omega$,

$$t_d \approx R_T C_T \ln \left(\frac{.0063 R_T - 2.3}{.0063 - 4} \right)$$


$$\text{Resultant frequency } f \approx \frac{1.8}{(R_T C_T)}$$

$$\text{Resultant frequency } f = \frac{1}{(t_c + t_d)}$$

Open-Loop Laboratory Test Fixture

High peak current associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K potentiometer are used to sample the oscillator wave form and apply an adjustable ramp to pin 3.

**IP1842 SERIES
IP1843 SERIES**

TYPICAL PERFORMANCE CHARACTERISTICS

