
IP1R19A
IP3R19A
IP1R19
IP3R19

Pin 1 – Ground

Pin 2 – V_{OUT}Case – V_{IN}

K Package – TO-3

Pin 1 – Ground

Pin 2 – V_{IN}Pin 3 – V_{OUT}Case – V_{IN}

V Package – TO-218

5 AMP FIXED NEGATIVE VOLTAGE REGULATORS

FEATURES

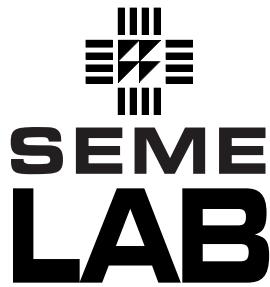
- 0.01%/V LINE REGULATION
- 0.5% LOAD REGULATION
- ±1% OUTPUT TOLERANCE
(-A VERSIONS)
- AVAILABLE IN -5V, -12V AND -15V OPTIONS
- COMPLETE SERIES OF PROTECTIONS:
 - CURRENT LIMITING
 - THERMAL SHUTDOWN
 - SOA CONTROL

Order Information

Part Number	K-Pack (TO-3)	V-Pack (TO-218)	Temp. Range
IP1R19Axx-zz	✓		-55 to +150°C
IP1R19xx-zz	✓		"
IP3R19Azz-xx	✓	✓	0 to +125°C
IP3R19zz-xx	✓	✓	"

Note:

xx = Voltage Code
(05, 12, 15)

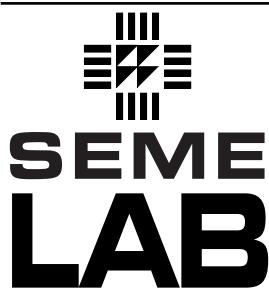

eg. IP1R19AK-05

zz = Package Code
(K, V)

IP3R19V-12

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V _I	DC Input Voltage	35V
P _D	Power Dissipation	Internally limited
T _J	Operating Junction Temperature Range	See Table Above
	Storage Temperature Range	-65°C to +150°C
	Lead Temperature (Soldering, 10 sec)	300°C


IP1R19A
IP3R19A
IP1R19
IP3R19

ELECTRICAL CHARACTERISTICS ($T_C = 25^\circ\text{C}$ unless otherwise stated)

Parameter	Test Conditions ²	IP1R19A-05 IP3R19A-05			IP1R19-05 IP3R19-05			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
V_O Output Voltage	$I_O = -5\text{mA}$ to -5A $P \leq 50\text{W}$ $V_{IN} = -8\text{V}$ to -20V $T_J = \text{Over Temp. Range } 1$	-5.05	-5	-4.95	-5.15	-5	-4.85	V
ΔV_O Line Regulation	$V_{IN} = -7.5\text{V}$ to -35V	3	15		6	30		mV
ΔV_I	$I_O = -5\text{mA}$ ³ $T_J = \text{Over Temp. Range } 1$	6	30		12	60		
ΔV_O Load Regulation	$I_O = -5\text{mA}$ to -5A ³	5	25		10	50		mV
ΔI_O	$T_J = \text{Over Temp. Range } 1$	10	50		20	100		
I_Q Quiescent Current	$I_O = -5\text{mA}$ $T_J = \text{Over Temp. Range } 1$		5			5		mA
ΔI_Q Quiescent Current Change	$I_O = -5\text{mA}$ to -5A $T_J = \text{Over Temp. Range } 1$		10			10		mA
	$I_O = -5\text{mA}$ $V_{IN} = -7.5\text{V}$ to -35V $T_J = \text{Over Temp. Range } 1$		5			5		
V_D Dropout Voltage	$I_O = -5\text{A}$ $\Delta V_{OUT} = 100\text{mV}$ $T_J = \text{Over Temp. Range } 1$	2.2	3		2.2	3		V
Ripple Rejection	$I_O = -1\text{A}$ $f = 120\text{Hz}$ $T_J = \text{Over Temp. Range } 1$	60	80		60	80		dB
Thermal Regulation	$t_p = 20\text{ms}$ $\Delta P = 50\text{W}$	0.002	0.01		0.002	0.02		%/W
I_{PEAK} Peak Output Current	$V_{IN} = -10\text{V}$ $T_J = \text{Over Temp. Range } 1$	-12	-8		-12	-8		A
I_{SC} Short Circuit Current	$V_{IN} = -10\text{V}$		-7			-7		A
	$V_{IN} = -35\text{V}$		-2			-2		
e_n Output Noise Voltage	$f = 10\text{Hz}$ to 100kHz	40			40			μV
$R_{\theta JC}$ Thermal Resistance Junction to Case	K Package	1.0	1.5		1.0	1.5		$^\circ\text{C/W}$
	V Package	1.0	1.5		1.0	1.5		

Notes

- Applies over full temperature range:-
 $T_J = -55$ to $+150^\circ\text{C}$ for IP1R19A-05 / IP1R19-05
 $T_J = 0$ to $+125^\circ\text{C}$ for IP3R19A-05 / IP3R19-05
All other specifications apply at $T_C = 25^\circ\text{C}$ unless otherwise stated.
- Test conditions unless otherwise stated:-
 $V_{IN} = -10\text{V}$, $I_{OUT} = -2.5\text{A}$.
Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.
- Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

IP1R19A
IP3R19A
IP1R19
IP3R19

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

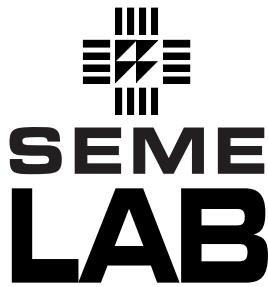
Parameter	Test Conditions ²	IP1R19A-12 IP3R19A-12			IP1R19-12 IP3R19-12			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
V_O Output Voltage	$I_O = -5\text{mA}$ to -5A $P \leq 50\text{W}$ $V_{IN} = -15\text{V}$ to -27V $T_J = \text{Over Temp. Range } 1$	-12.12	-12	-11.88	-12.36	-12	-11.64	V
ΔV_O Line Regulation	$V_{IN} = -14.5\text{V}$ to -35V $I_O = -5\text{mA}$ ³ $T_J = \text{Over Temp. Range } 1$	5	30		10	60		mV
ΔV_O Load Regulation	$I_O = -5\text{mA}$ to -5A ³ $T_J = \text{Over Temp. Range } 1$	10	60		20	120		mV
I_Q Quiescent Current	$I_O = -5\text{mA}$ $T_J = \text{Over Temp. Range } 1$			5			5	mA
ΔI_Q Quiescent Current Change	$I_O = -5\text{mA}$ to -5A $T_J = \text{Over Temp. Range } 1$		10				10	mA
	$I_O = -5\text{mA}$ $V_{IN} = -14.5\text{V}$ to -35V $T_J = \text{Over Temp. Range } 1$		5				5	
V_D Dropout Voltage	$I_O = -5\text{A}$ $\Delta V_{OUT} = 250\text{mV}$ $T_J = \text{Over Temp. Range } 1$		2.2	3	2.2	3		V
Ripple Rejection	$I_O = -1\text{A}$ $f = 120\text{Hz}$ $T_J = \text{Over Temp. Range } 1$	52	72		52	72		dB
Thermal Regulation	$t_p = 20\text{ms}$ $\Delta P = 50\text{W}$		0.002	0.01	0.002	0.02		%/W
I_{PEAK} Peak Output Current	$V_{IN} = -17\text{V}$ $T_J = \text{Over Temp. Range } 1$	-12	-8		-12	-8		A
I_{SC} Short Circuit Current	$V_{IN} = -17\text{V}$		-4		-4			A
	$V_{IN} = -35\text{V}$		-2		-2			
e_n Output Noise Voltage	$f = 10\text{Hz}$ to 100kHz		75		75			μV
$R_{\theta JC}$ Thermal Resistance Junction to Case	K Package		1.0	1.5	1.0	1.5		$^\circ\text{C/W}$
	V Package		1.0	1.5	1.0	1.5		

Notes

1) Applies over full temperature range:-

$T_J = -55$ to $+150^\circ\text{C}$ for IP1R19A-12 / IP1R19-12

$T_J = 0$ to $+125^\circ\text{C}$ for IP3R19A-12 / IP3R19-12


All other specifications apply at $T_C = 25^\circ\text{C}$ unless otherwise stated.

2) Test conditions unless otherwise stated:-

$V_{IN} = -17\text{V}$, $I_{OUT} = -2.5\text{A}$.

Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.

3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.

IP1R19A
IP3R19A
IP1R19
IP3R19

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise stated)

Parameter	Test Conditions ²	IP1R19A-15 IP3R19A-15			IP1R19-15 IP3R19-15			Units
		Min.	Typ.	Max.	Min.	Typ.	Max.	
V_O Output Voltage	$I_O = -5\text{mA}$ to -5A $P_{\text{OUT}} \leq 50\text{W}$ $V_{\text{IN}} = -18\text{V}$ to -30V $T_J = \text{Over Temp. Range } 1$	-15.15	-15	-14.85	-15.45	-15	-14.55	V
ΔV_O Line Regulation	$V_{\text{IN}} = -17.5\text{V}$ to -35V		8	40		16	80	mV
ΔV_I	$I_O = -5\text{mA}$ ³ $T_J = \text{Over Temp. Range } 1$		16	80		32	160	
ΔV_O Load Regulation	$I_O = -5\text{mA}$ to -5A ³		16	80		32	160	mV
ΔI_O	$T_J = \text{Over Temp. Range } 1$		32	160		64	320	
I_Q Quiescent Current	$I_O = -5\text{mA}$ $T_J = \text{Over Temp. Range } 1$			5			5	mA
ΔI_Q Quiescent Current Change	$I_O = -5\text{mA}$ to -5A $T_J = \text{Over Temp. Range } 1$			10			10	mA
	$I_O = -5\text{mA}$ $V_{\text{IN}} = -17.5\text{V}$ to -35V $T_J = \text{Over Temp. Range } 1$			5			5	
V_D Dropout Voltage	$I_O = -5\text{A}$ $\Delta V_{\text{OUT}} = 300\text{mV}$ $T_J = \text{Over Temp. Range } 1$		2.2	3		2.2	3	V
Ripple Rejection	$I_O = -1\text{A}$ $f = 120\text{Hz}$ $T_J = \text{Over Temp. Range } 1$	50	70		50	70		dB
Thermal Regulation	$t_p = 20\text{ms}$ $\Delta P = 50\text{W}$		0.002	0.01		0.002	0.02	%/W
I_{PEAK} Peak Output Current	$V_{\text{IN}} = -20\text{V}$ $T_J = \text{Over Temp. Range } 1$	-12	-8		-12	-8		A
I_{SC} Short Circuit Current	$V_{\text{IN}} = -20\text{V}$			-3.5			-3.5	A
	$V_{\text{IN}} = -35\text{V}$			-2			-2	
e_n Output Noise Voltage	$f = 10\text{Hz}$ to 10kHz		90			90		μV
$R_{\theta\text{JC}}$ Thermal Resistance Junction to Case	K Package		1.0	1.5		1.0	1.5	$^\circ\text{C/W}$
	V Package		1.0	1.5		1.0	1.5	

Notes

- 1) Applies over full temperature range:-
 - $T_J = -55$ to $+150^\circ\text{C}$ for IP1R19A-15 / IP1R19-15
 - $T_J = 0$ to $+125^\circ\text{C}$ for IP3R19A-15 / IP3R19-15
 - All other specifications apply at $T_C = 25^\circ\text{C}$ unless otherwise stated.
- 2) Test conditions unless otherwise stated:-
 - $V_{\text{IN}} = -20\text{V}$, $I_{\text{OUT}} = -2.5\text{A}$.
 - Although Power Dissipation is internally limited, these specifications apply for Power Dissipation up to 50W.
- 3) Load and Line regulation are electrically independent and are measured using pulse techniques at low duty cycle in order to maintain constant junction temperature. To determine the effects on the output voltage due to device heating, refer to thermal regulation specification.