

IRF130SMD

MECHANICAL DATA

Dimensions in mm (inches)

N-CHANNEL POWER MOSFET FOR HI-REL APPLICATIONS

 V_{DSS} 100V $I_{D(cont)}$ 11A $R_{DS(on)}$ 0.19 Ω

FEATURES

- HERMETICALLY SEALED
- SIMPLE DRIVE REQUIREMENTS
- LIGHTWEIGHT
- SCREENING OPTIONS AVAILABLE
- ALL LEADS ISOLATED FROM CASE

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

V_{GS}	Gate – Source Voltage	±20V
I _D	Continuous Drain Current @ T _{case} = 25°C	11A GOM
I _D	Continuous Drain Current @ T _{case} = 100°C	7A
I_{DM}	Pulsed Drain Current	44A
P_{D}	Power Dissipation @ T _{case} = 25°C	45W
	Linear Derating Factor	0.36W/°C
T _J , T _{stg}	Operating and Storage Temperature Range	−55 to 150°C
$R_{\theta JC}$	Thermal Resistance Junction to Case	2.8°C/W max.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise stated)

Parameter		Test Conditions		Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	•						
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	100			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 25°C			0.1		V/°C	
ΔT_{J}	Breakdown Voltage							
R _{DS(on)}	Static Drain – Source On–State	$V_{GS} = 10V$	I _D = 7A			0.19	Ω	
	Resistance	$V_{GS} = 10V$	I _D = 11A			0.22		
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V	
9 _{fs}	Forward Transconductance	$V_{DS} \ge 15V$	I _{DS} = 7A	3			S(\Omega)	
I _{DSS}	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			25	μΑ	
			T _J = 125°C			250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V				100	nA	
I _{GSS}	Reverse Gate – Source Leakage	$V_{GS} = -20V$				-100] IIA	
	DYNAMIC CHARACTERISTICS	•	•					
C _{iss}	Input Capacitance	$V_{GS} = 0$			650		\Box	
C _{oss}	Output Capacitance	V _{DS} = 25V			240		pF	
C _{rss}	Reverse Transfer Capacitance	f = 1MHz			44		1	
	Total Cata Charge	V _{GS} = 10V	I _D = 11A	12.8		28.5	nC	
Q_g	Total Gate Charge	$V_{DS} = 0.5BV_{DS}$	S	12.0		20.5		
Q _{gs}	Gate - Source Charge	$I_D = 11A$ $V_{DS} = 0.5BV_{DSS}$		1.0		6.3	nC	
Q_{gd}	Gate - Drain ("Miller") Charge			3.8		16.6		
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 50V$ $I_{D} = 11A$ $R_{G} = 7.5\Omega$				30	ns	
t _r	Rise Time					75		
t _{d(off)}	Turn-Off Delay Time					40		
t _f	Fall Time	- ING - 7.352				45		
	SOURCE - DRAIN DIODE CHARAC	TERISTICS	•					
I _S	Continuous Source Current					11	A	
I _{SM}	Pulse Source Current					43		
V _{SD}	Diode Forward Voltage	I _S = 11A	$T_J = 25^{\circ}C$			1.5	V	
		$V_{GS} = 0$				1.5		
t _{rr}	Reverse Recovery Time	I _S = 11A	$T_J = 25^{\circ}C$			300	ns	
Q _{rr}	Reverse Recovery Charge	d _i / d _t ≤ 100A/μs	s V _{DD} ≤ 50V			3	μС	
	PACKAGE CHARACTERISTICS		•					
L _D	Internal Drain Inductance (ance (from 6mm down drain lead pad to centre of die)			8.7		nH	
L _S	Internal Source Inductance (from 6mm of				8.7			