

International Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET® TRANSISTOR

IRHM7064

IRHM8064

N-CHANNEL
MEGA RAD HARD

60 Volt, 0.021Ω, MEGA RAD HARD HEXFET

International Rectifier's RAD HARD technology HEXFETs demonstrate virtual immunity to SEE failure. Additionally, under **identical** pre- and post-radiation test conditions, International Rectifier's RAD HARD HEXFETs retain **identical** electrical specifications up to 1×10^5 Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1×10^{12} Rads (Si)/Sec, and return to normal operation within a few microseconds. Since the RAD HARD process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

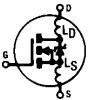
They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

Product Summary

Part Number	BVDSS	RDS(on)	ID
IRHM7064	60V	0.021Ω	35A*
IRHM8064	60V	0.021Ω	35A*

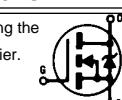
Features:

- Radiation Hardened up to 1×10^6 Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Electrically Isolated
- Ceramic Eyelets


Absolute Maximum Ratings

Pre-Radiation

	Parameter	IRHM7064, IRHM8064	Units
Id @ VGS = 12V, TC = 25°C	Continuous Drain Current	35*	A
Id @ VGS = 12V, TC = 100°C	Continuous Drain Current	35*	
IdM	Pulsed Drain Current①	284	
PD @ TC = 25°C	Max. Power Dissipation	250	W
	Linear Derating Factor	2.0	W/K ^⑤
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ^②	500	mJ
IAR	Avalanche Current①	35	A
EAR	Repetitive Avalanche Energy ^①	25	mJ
TJ	Peak Diode Recovery dv/dt ^③	4.5	V/ns
TSG	Operating Junction Storage Temperature Range	-55 to 150	°C
	Lead Temperature	300 (0.063 in (1.6mm) from case for 10 sec.)	


Electrical Characteristics @ $T_j = 25^\circ\text{C}$ (Unless Otherwise Specified)

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	60	—	—	V	$\text{V}_{\text{GS}} = 0\text{V}, \text{ID} = 1.0 \text{ mA}$
$\Delta \text{BV}_{\text{DSS}}/\Delta T_j$	Temperature Coefficient of Breakdown Voltage	—	0.048	—	$\text{V}/^\circ\text{C}$	Reference to 25°C , $\text{ID} = 1.0 \text{ mA}$
$\text{R}_{\text{DS(on)}}$	Static Drain-to-Source On-State Resistance	—	—	0.021	Ω	$\text{V}_{\text{GS}} = 12\text{V}, \text{ID} = 35\text{A}$
$\text{V}_{\text{GS(th)}}$	Gate Threshold Voltage	2.0	—	4.0	V	$\text{V}_{\text{DS}} = \text{V}_{\text{GS}}, \text{ID} = 1.0 \text{ mA}$
g_{fs}	Forward Transconductance	18	—	—	$\text{S} (\text{A})$	$\text{V}_{\text{DS}} > 15\text{V}, \text{ID} = 35\text{A}$ ^④
ID_{SS}	Zero Gate Voltage Drain Current	—	—	25	μA	$\text{V}_{\text{DS}} = 0.8 \times \text{Max Rating}, \text{V}_{\text{GS}} = 0\text{V}$
		—	—	250		$\text{V}_{\text{DS}} = 0.8 \times \text{Max Rating}$ $\text{V}_{\text{GS}} = 0\text{V}, T_j = 125^\circ\text{C}$
I_{GSS}	Gate-to-Source Leakage Forward	—	—	100	nA	$\text{V}_{\text{GS}} = 20\text{V}$
I_{GSS}	Gate-to-Source Leakage Reverse	—	—	-100		$\text{V}_{\text{GS}} = -20\text{V}$
Q_{g}	Total Gate Charge	—	—	260	nC	$\text{V}_{\text{GS}} = 12\text{V}, \text{ID} = 35\text{A}$
Q_{gs}	Gate-to-Source Charge	—	—	60		$\text{V}_{\text{DS}} = \text{Max. Rating} \times 0.5$
Q_{gd}	Gate-to-Drain ("Miller") Charge	—	—	86	ns	$\text{V}_{\text{DD}} = 30\text{V}, \text{ID} = 35\text{A},$ $\text{RG} = 2.35\Omega$
$t_{\text{d(on)}}$	Turn-On Delay Time	—	—	27		
t_{r}	Rise Time	—	—	120	ns	
$t_{\text{d(off)}}$	Turn-Off Delay Time	—	—	76		
t_{f}	Fall Time	—	—	93	nH	
L_{D}	Internal Drain Inductance	—	8.7	—		
L_{S}	Internal Source Inductance	—	8.7	—	pF	Measured from the drain lead, 6mm (0.25 in.) from package to center of die. Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.
C_{iss}	Input Capacitance	—	7400	—		
C_{oss}	Output Capacitance	—	3200	—		$\text{V}_{\text{GS}} = 0\text{V}, \text{V}_{\text{DS}} = 25\text{V}$ $f = 1.0 \text{ MHz}$
C_{rss}	Reverse Transfer Capacitance	—	540	—		

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
I_{S}	Continuous Source Current (Body Diode)	—	—	35	A	Modified MOSFET symbol showing the integral reverse p-n junction rectifier.
I_{SM}	Pulse Source Current (Body Diode) ^①	—	—	284		
V_{SD}	Diode Forward Voltage	—	—	3.0	V	$T_j = 25^\circ\text{C}, \text{I}_{\text{S}} = 35\text{A}, \text{V}_{\text{GS}} = 0\text{V}$ ^④
t_{rr}	Reverse Recovery Time	—	—	220	ns	$T_j = 25^\circ\text{C}, \text{I}_{\text{F}} = 35\text{A}, \text{dI}/\text{dt} \leq 100\text{A}/\mu\text{s}$ $\text{V}_{\text{DD}} \leq 50\text{V}$ ^④
Q_{RR}	Reverse Recovery Charge	—	—	1.1	μC	
t_{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $\text{L}_{\text{S}} + \text{L}_{\text{D}}$.				

Thermal Resistance

	Parameter	Min.	Typ.	Max.	Units	Test Conditions
R_{thJC}	Junction-to-Case	—	—	0.50	K/W ^⑤	
$\text{R}_{\text{thJ-PCB}}$	Junction-to-PC board	—	—	48		
R_{thCS}	Case-to-Sink	—	0.21	—		
						typical socket mount

IRHM7064, IRHM8064 Devices

Radiation Characteristics

Radiation Performance of Rad Hard HEXFETs

International Rectifier Radiation Hardened HEX-FETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier uses two radiation environments.

Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019. International Rectifier has imposed a standard gate voltage of 12 volts per note 6 and a V_{DSS} bias condition equal to 80% of the device rated voltage per note 7. Pre- and post-radiation limits of the devices irradiated to 1×10^5 Rads (Si) are identical and are presented in Table 1, column 1, IRHM7064. The values in Table 1 will be met for either of the two low dose rate test circuits that are used.

Both pre- and post-radiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. It should be noted that at a radiation level of 1×10^5 Rads (Si), no change in limits are specified in DC parameters.

High dose rate testing may be done on a special request basis, using a dose rate up to 1×10^{12} Rads (Si)/Sec.

International Rectifier radiation hardened HEXFETs have been characterized in neutron and heavy ion Single Event Effects (SEE) environments. Single Event Effects characterization is shown in Table 3.

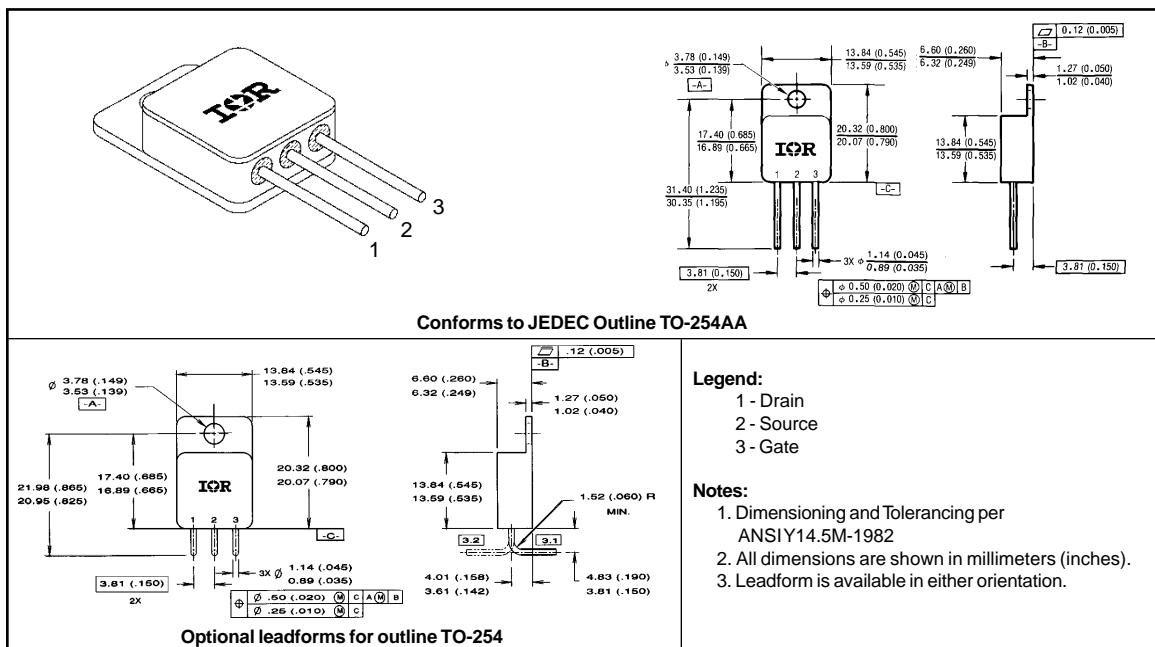
Table 1. Low Dose Rate ⑥ ⑦

Parameter	IRHM7064		IRHM8064		Units	Test Conditions ⑩		
	100K Rads (Si)		1000K Rads (Si)					
	min.	max.	min.	max.				
BV_{DSS}	Drain-to-Source Breakdown Voltage	100	—	100	—	V		
$V_{GS(th)}$	Gate Threshold Voltage ④	2.0	4.0	1.25	4.5	$V_{GS} = V_{DS}, I_D = 1.0$ mA		
I_{GSS}	Gate-to-Source Leakage Forward	—	100	—	100	nA		
I_{GSS}	Gate-to-Source Leakage Reverse	—	-100	—	-100	$V_{GS} = 20$ V		
I_{DSS}	Zero Gate Voltage Drain Current	—	25	—	50	μ A		
$R_{DS(on)1}$	Static Drain-to-Source ④	—	0.021	—	0.029	Ω		
On-State Resistance One						$V_{GS} = 12$ V, $I_D = 35$ A		
V_{SD}	Diode Forward Voltage ④	—	3.0	—	3.0	V		
						$T_C = 25^\circ\text{C}, I_S = 35\text{A}, V_{GS} = 0$ V		

Table 2. High Dose Rate ⑧

Parameter	10 ¹¹ Rads (Si)/sec			10 ¹² Rads (Si)/sec			Units	Test Conditions
	Min.	Typ.	Max.	Min.	Typ.	Max.		
V_{DSS}	Drain-to-Source Voltage	—	—	48	—	—	48	V
I_{PP}	—	140	—	—	140	—	A	Applied drain-to-source voltage during gamma-dot
di/dt	—	800	—	—	160	—	A/ μ sec	Peak radiation induced photo-current
L_1	0.1	—	—	0.8	—	—	μ H	Rate of rise of photo-current
								Circuit inductance required to limit di/dt

Table 3. Single Event Effects ⑨


Parameter	Typ.	Units	Ion	LET (Si) (MeV/mg/cm ²)	Fluence (ions/cm ²)	Range (μ m)	V_{DS} Bias (V)	V_{GS} Bias (V)
BV_{DSS}	60	V	Ni	28	1×10^5	~41	60	-5

IRHM7064, IRHM8064 Devices

Radiation Characteristics

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
Refer to current HEXFET reliability report.
- ② @ $V_{DD} = 25V$, Starting $T_J = 25^\circ C$,
 $EAS = [0.5 * L * (I_L) * [BV_{DSS}/(BV_{DSS}-V_{DD})]]$
Peak $I_L = 35A$, $V_{GS} = 12V$, $25 \leq RG \leq 200\Omega$
- ③ $I_{SD} \leq 35A$, $dI/dt \leq 170 A/\mu s$,
 $V_{DD} \leq BV_{DSS}$, $T_J \leq 150^\circ C$
Suggested $RG = 2.35\Omega$
- ④ Pulse width $\leq 300 \mu s$; Duty Cycle $\leq 2\%$
- ⑤ $K/W = ^\circ C/W$
 $W/K = W/^{\circ}C$
- ⑥ **Total Dose Irradiation with V_{GS} Bias.**
+12 volt V_{GS} applied and $V_{DS} = 0$ during irradiation per MIL-STD-750, method 1019.
- ⑦ **Total Dose Irradiation with V_{DS} Bias.**
 $V_{DS} = 0.8$ rated BV_{DSS} (pre-radiation) applied and $V_{GS} = 0$ during irradiation per MIL-STD-750, method 1019.
- ⑧ This test is performed using a flash x-ray source operated in the e-beam mode (energy ~ 2.5 MeV), 30 nsec pulse.
- ⑨ Process characterized by independent laboratory.
- ⑩ All Pre-Radiation and Post-Radiation test conditions are **identical** to facilitate direct comparison for circuit applications.

Case Outline and Dimensions – TO-254AA

CAUTION

BERYLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxides packages shall not be placed in acids that will produce fumes containing beryllium.

International
IR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331

EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020

IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897

IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086

IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371