International **IGR** Rectifier **RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-1)**

Product Summary

Part Number	Radiation Level	RDS(on)	lD	QPL Part Number
IRHN7150	100K Rads (Si)	0.065Ω	34A	JANSR2N7268U
IRHN3150	300K Rads (Si)	0.065Ω	34A	JANSF2N7268U
IRHN4150	600K Rads (Si)	0.065Ω	34A	JANSG2N7268U
IRHN8150	1000K Rads (Si)	0.065Ω	34A	JANSH2N7268U

International Rectifier's RADHard HEXFET® technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low Rdson and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.

Absolute Maximum Ratings

PD - 90720C

,24小时加急出货

IRHN7150 JANSR2N7268U 100V, N-CHANNEL REF: MIL-PRF-19500/603 RAD Hard[®] HEXFET[®] TECHNOLOGY

专业PCB打样工厂

Features:

- Single Event Effect (SEE) Hardened
- Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Ceramic Package
- Light Weight

Pre-Irradiation

A BALLER CE	Parameter		Units
ID @ VGS = 12V, TC = 25°C	Continuous Drain Current	34	
ID @ VGS = 12V, TC = 100°C	Continuous Drain Current	21	A
IDM	Pulsed Drain Current ①	136	-1.1
P _D @ T _C = 25°C	Max. Power Dissipation	150	W
	Linear Derating Factor	1.2	W/°C
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy 2	500	mJ
I _{AR}	Avalanche Current ①	34	Α
EAR	Repetitive Avalanche Energy 1	15	mJ
dv/dt	Peak Diode Recovery dv/dt 3	5.5	V/ns
TJ	Operating Junction	-55 to 150	
TSTG	Storage Temperature Range		°C
1910 - 1- C	PCKG. Mounting Surface Temp.	300 (for 5s)	
	Weight	2.6 (Typical)	g

For footnotes refer to the last page

Pre-Irradiation

	Parameter		Turn	Max	Unito	Toot Conditions
		Min	Тур	wax	Units	Test Conditions
BVDSS	Drain-to-Source Breakdown Voltage	100	—	—	V	VGS =0 V, ID = 1.0mA
∆BV _{DSS} /∆TJ	Temperature Coefficient of Breakdown Voltage	—	0.13	_	V/°C	Reference to 25°C, $I_D = 1.0$ mA
RDS(on)	Static Drain-to-Source		—	0.065		VGS = 12V, ID = 21A
	On-State Resistance	—	_	0.070	Ω	VGS = 12V, ID = 34A ⁽⁴⁾
VGS(th)	Gate Threshold Voltage	2.0	—	4.0	V	VDS = VGS, $ID = 1.0mA$
9fs	Forward Transconductance	8.0	—	—	S (ひ)	V _{DS} > 15V, I _{DS} = 21A ④
IDSS	Zero Gate Voltage Drain Current	—	—	25	μA	VDS= 160V,VGS=0V
		—	—	250	μΑ	VDS = 80V
						$V_{GS} = 0V, T_{J} = 125^{\circ}C$
IGSS	Gate-to-Source Leakage Forward	_	—	100		VGS = 20V
IGSS	Gate-to-Source Leakage Reverse		—	-100	nA	VGS = -20V
Qg	Total Gate Charge		_	160		VGS = 12V, ID = 34A
Qgs	Gate-to-Source Charge	_	—	35	nC	$V_{DS} = 50V$
Qgd	Gate-to-Drain ('Miller') Charge	—	—	65		
td(on)	Turn-On Delay Time	—	—	45		$V_{DD} = 50V, I_D = 34A,$
tr	Rise Time	—	—	190	ns	VGS = 12V, RG =2.35Ω
td(off)	Turn-Off Delay Time	—	—	170	115	
tf	Fall Time	_	—	130		
LS + LD	Total Inductance	_	4.0	_	nH	Measured from the center of drain pad to center of source pad
Ciss	Input Capacitance	_	4300	—		VGS = 0V, VDS = 25V
Coss	Output Capacitance	—	1200	—	pF	f = 1.0MHz
C _{rss}	Reverse Transfer Capacitance	—	200	—		

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min	Тур	Max	Units	Test Conditions		
IS	Continuous Source Current (Body Diode)	_	_	34	Α			
ISM	Pulse Source Current (Body Diode) ①	—	—	136	A			
VSD	Diode Forward Voltage	—	—	1.4	V	Tj = 25°C, IS = 34A, VGS = 0V ④		
t _{rr}	Reverse Recovery Time	_	—	570	nS	Tj = 25°C, IF = 34A, di/dt ≥ 100A/μs		
QRR	Reverse Recovery Charge	—	—	5.8	μC	V _{DD} ≤ 25V ④		
ton	Forward Turn-On Time Intrinsic turn-on	Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by $L_S + L_D$.						

Thermal Resistance

	Parameter	Min	Тур	Мах	Units	Test Conditions	
RthJC	Junction-to-Case	—	—	0.83	°C/W		
RthJ-PCB	Junction-to-PC board	—	6.6	_	0/00	soldered to a 1"sq. copper-clad board	

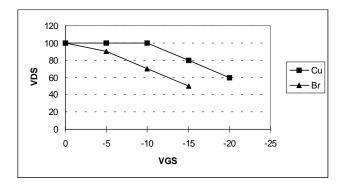
Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page

Radiation Characteristics

IRHN7150, JANSR2N7268U

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

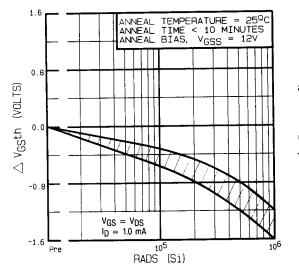
Parameter		100KR	ids(Si) ¹	600 to 1000K Rads (Si) ²		Units	Test Conditions	
		Min	Max	Min	Max			
BV _{DSS}	Drain-to-Source Breakdown Voltage	200		200	—	V	V _{GS} = 0V, I _D = 1.0mA	
VGS(th)	Gate Threshold Voltage	2.0	4.0	1.25	4.5		$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$	
IGSS	Gate-to-Source Leakage Forward	_	100	—	100	nA	$V_{GS} = 20V$	
IGSS	Gate-to-Source Leakage Reverse	—	-100	-	-100		V _{GS} = -20 V	
IDSS	Zero Gate Voltage Drain Current	—	25	-	50	μA	V _{DS} =80V, V _{GS} =0V	
R _{DS(on)}	Static Drain-to-Source ④	—	0.065	-	0.09	Ω	VGS = 12V, I _D =21A	
	On-State Resistance (TO-3)							
R _{DS(on)}	Static Drain-to-Source ④	_	0.065	-	0.09	Ω	VGS = 12V, I _D =21A	
, ,	On-State Resistance (SMD-1)							
V _{SD}	Diode Forward Voltage ④	_	1.4	—	1.4	V	$V_{GS} = 0V, I_{S} = 34A$	


1. Part number IRHN7150 (JANSR2N7268U)

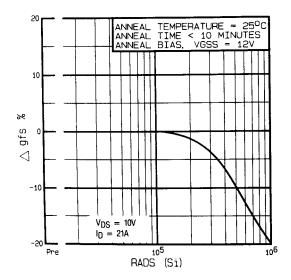
2. Part numbers IRHN3150 (JANSF2N7268U), IRHN4150 (JANSG2N7268U) and IRHN8150 (JANSH2N7268U)

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area


lon	LET	Energy	Range	VDS(V)								
	MeV/(mg/cm ²))	(MeV)	(µm)	@Vgs=0V	@VGS=-5V	@VGS=-10V	@VGS=-15V	@VGS=-20V				
Cu	28	285	43	100	100	100	80	60				
Br	36.8	305	39	100	90	70	50	—				


For footnotes refer to the last page


Post-Irradiation

100 TEMPERATURE = 25°C TIME < 10 MINUTES BIAS, VGSS = 12V ANNEAL ANNEAL ANNEAL 60 26 Δ Ros (on) 20 -20 -60 ПП $V_{GS} = 12V$ $I_D = 21A$ 11 -100 10⁵ RADS (Si) 10⁶ Pre

Voltage Vs. Total Dose Exposure

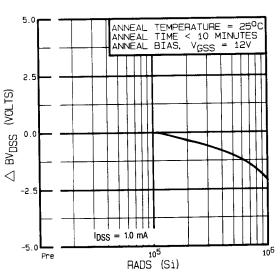
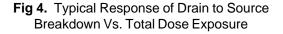
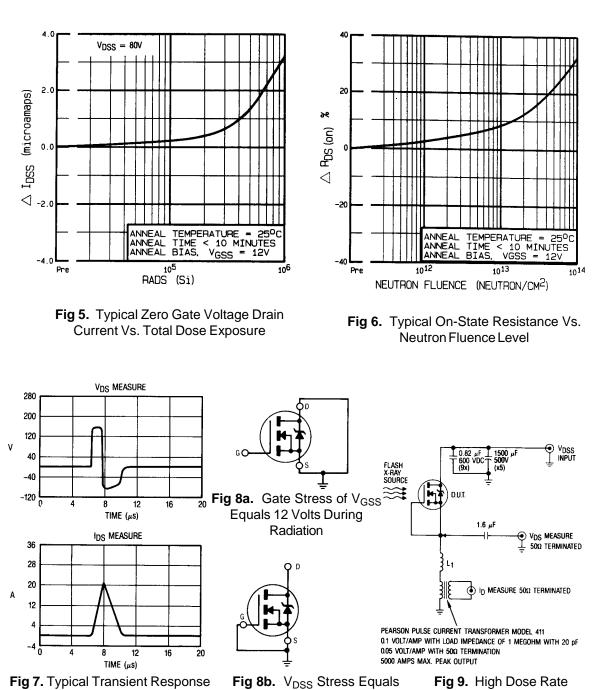
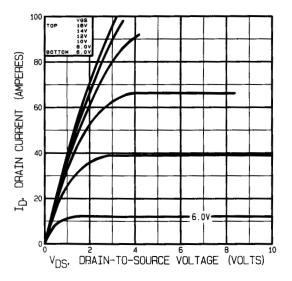




Fig 3. Typical Response of Transconductance Vs. Total Dose Exposure

Post-Irradiation

IRHN7150, JANSR2N7268U



80% of B_{VDSS} During Radiation

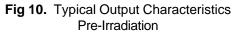

Fig 7. Typical Transient Response of Rad Hard HEXFET During 1x10¹² Rad (Si)/Sec Exposure

Fig 9. High Dose Rate (Gamma Dot) Test Circuit

Radiation Characteristics

Note: Bias Conditions during radiation: VGS = 12 Vdc, VDS = 0 Vdc

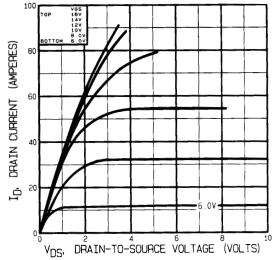
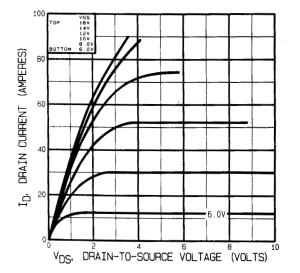
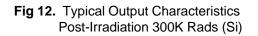
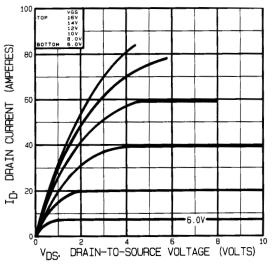
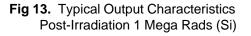
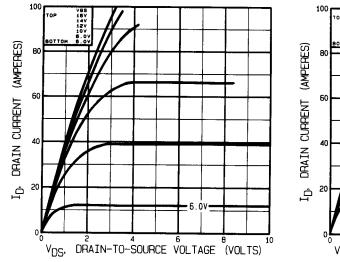






Fig 11. Typical Output Characteristics Post-Irradiation 100K Rads (Si)



Radiation Characteristics

IRHN7150, JANSR2N7268U

Note: Bias Conditions during radiation: VGS = 0 Vdc, VDS = 160 Vdc

Fig 14. Typical Output Characteristics Pre-Irradiation

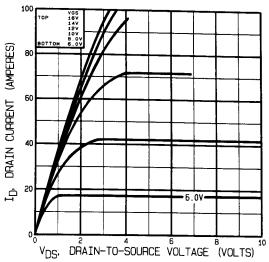
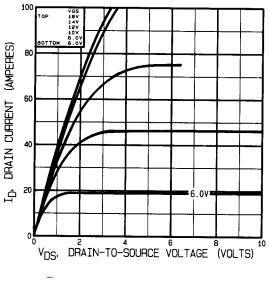
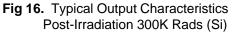
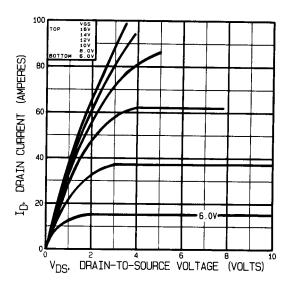
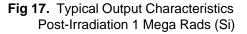






Fig 15. Typical Output Characteristics Post-Irradiation 100K Rads (Si)

Pre-Irradiation

. OV

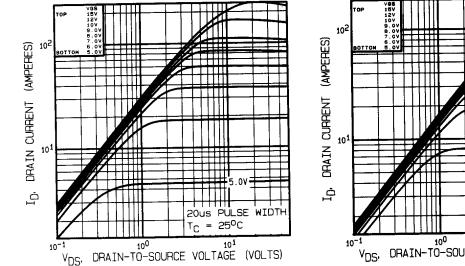


Fig 18. Typical Output Characteristics

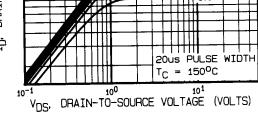
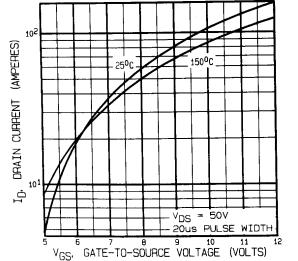
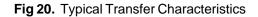
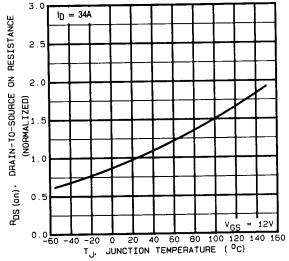
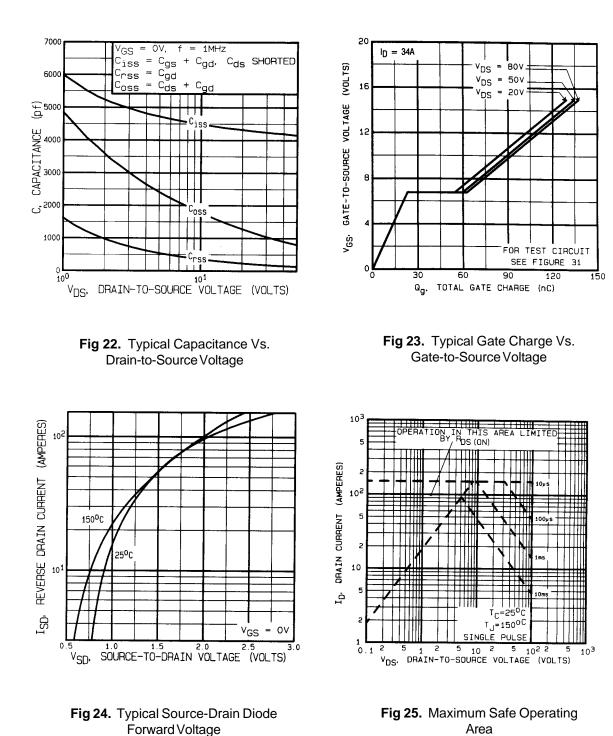
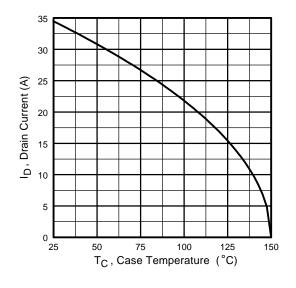
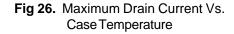
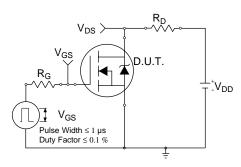
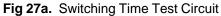




Fig 19. Typical Output Characteristics


Fig 21. Normalized On-Resistance Vs. Temperature





Pre-Irradiation

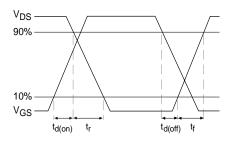
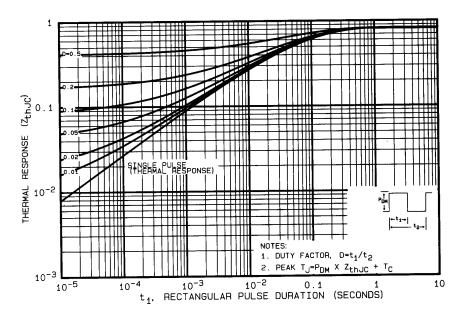



Fig 27b. Switching Time Waveforms

Pre-Irradiation

IRHN7150, JANSR2N7268U

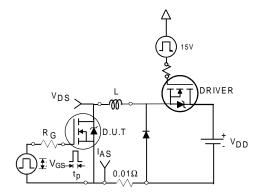


Fig 29a. Unclamped Inductive Test Circuit

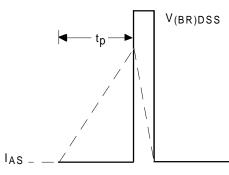


Fig 29b. Unclamped Inductive Waveforms

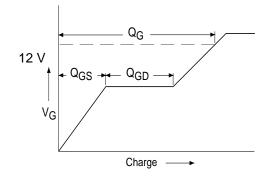
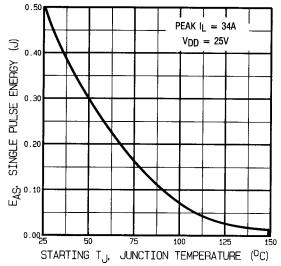
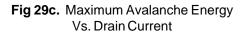




Fig 30a. Basic Gate Charge Waveform

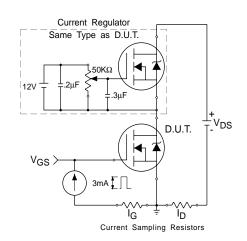
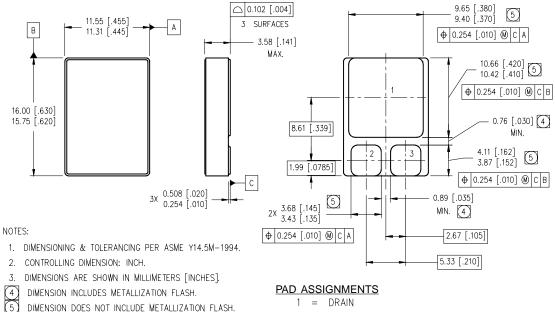


Fig 30b. Gate Charge Test Circuit


Pre-Irradiation

Foot Notes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- V__ = 25V, starting T_I = 25°C, L=0.86mH 2 Peak IL = 34A, VGS =12V
- 3 ISD \leq 34A, di/dt \leq 140A/ μ s, $V_{DD} \le 100V, T_J \le 150^{\circ}C$

- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- **5** Total Dose Irradiation with VGS Bias. 12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- **6** Total Dose Irradiation with V_{DS} Bias. 80 volt VDS applied and VGS = 0 during irradiation per MIL-STD-750, method 1019, condition A.

Case Outline and Dimensions — SMD-1

DIMENSION DOES NOT INCLUDE METALLIZATION FLASH.

1 = DRAIN

2 = GATE3 = SOURCE

International ICR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 02/01