連多邦,专业PCB打样工厂,24小时加 Provisional Data Sheet No. PD-9.885

International **ICR** Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET® TRANSISTOR

IRHN9150 P-CHANNEL RAD HARD

-100 Volt, 0.120Ω, RAD HARD HEXFET

International Rectifier's P-channel RAD HARD technology HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiation doses as high as 10⁵ Rads (Si). Under identical pre- and post-radiation test conditions, International Rectifier's P-channel RAD HARD HEXFETs retain identical electrical specifications up to 1 x 105 Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1 x 10¹² Rads (Si)/Sec, and return to normal operation within a few microseconds. Single Event Effect, (SEE), testing of International Rectifier's P-channel RAD HARD HEXFETs has demonstrated virtual immunity to SEE failure. Since the P-channel RAD HARD process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

P-channel RAD HARD HEXFET transistors also feature all of the well-established advantages of MOS-FETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters.

They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

Absolute Maximum Ratings

Product Summary

Part Number	BVDSS	RDS(on)	lD
IRHN9150	-100V	0.120Ω	-22A

Features:

- Radiation Hardened up to 1 x 10⁵ Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Lightweight

Pre-Radiation

	J-					
	Parameter	IRHN9150	Units			
ID @ VGS = -12V, TC = 25°C	Continuous Drain Current	-22				
$I_D @ V_{GS} = -12V, T_C = 100^{\circ}C$	Continuous Drain Current	-14	A			
IDM	Pulsed Drain Current 1	-88				
P _D @ T _C = 25°C	Max. Power Dissipation	150	W			
	Linear Derating Factor	1.2	W/K 5			
VGS	Gate-to-Source Voltage	±20	V			
EAS	Single Pulse Avalanche Energy 2	500	mJ			
IAR	Avalanche Current 1	-22	A			
EAR	Repetitive Avalanche Energy 10	15	mJ			
dv/dt	Peak Diode Recovery dv/dt 3	-5.5	V/ns			
,找 PDF	Operating Junction	-55 to 150				
STO STO	Storage Temperature Range		∘C			
odf dzsc com	Package Mount Surface Temperature	300 (for 5 seconds)	7 °C			
	Weight	2.6 (typical)	g			

IRHN9150 Device

Pre-Radiation

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
BVDSS	Drain-to-Source Breakdown Voltage	-100	—	—	V	VGS = 0V, ID = -1.0 mA	
ΔBV _{DSS} /ΔTJ	Temperature Coefficient of Breakdown Voltage		-0.087	—	V/°C	Reference to 25°C, ID = -1.0 mA	
RDS(on)	Static Drain-to-Source	—		0.120		VGS = -12V, ID = -14A	
. ,	On-State Resistance	—		0.145	Ω	VGS = -12V, ID = -14A VGS = -12V, ID = -22A	
VGS(th)	Gate Threshold Voltage	-2.0	—	-4.0	V	VDS = VGS, ID = -1.0 mA	
9fs	Forward Transconductance	5.0	—	—	S (ひ)	VDS > -15V, IDS = -14A ④	
IDSS	Zero Gate Voltage Drain Current	—	_	-25		VDS = 0.8 x Max Rating,VGS = 0V	
		—	—	-250	μΑ	VDS = 0.8 x Max Rating	
						VGS = 0V, TJ = 125°C	
IGSS	Gate-to-Source Leakage Forward		_	-100	nA	VGS = -20V	
IGSS	Gate-to-Source Leakage Reverse	—	—	100		VGS = +20V	
Qg	Total Gate Charge	—	—	200		VGS = -12V, ID = -22A	
Qgs	Gate-to-Source Charge	—	—	45	nC	VDS = Max. Rating x 0.5	
Qgd	Gate-to-Drain ("Miller") Charge	—	—	85			
td(on)	Turn-On Delay Time	—	—	60		$V_{DD} = -50V, I_{D} = -22A,$	
tr	Rise Time	—	—	240	ns	RG = 2.35Ω	
td(off)	Turn-Off Delay Time	—	—	225	115		
tf	Fall Time	—	—	175			
LD	Internal Drain Inductance	_	TBD	—	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die.	
LS	Internal Source Inductance		TBD			Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	
Ciss	Input Capacitance	—	1100			$V_{GS} = 0V, V_{DS} = -25V$	
C _{OSS}	Output Capacitance	—	310	—	pF	f = 1.0 MHz	
C _{rss}	Reverse Transfer Capacitance	_	55				

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions	
IS	Continuous Source Current (Body Diode)			—	-22	A	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode) ①			—	-88		integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage				-3.6	V	Tj = 25°C, IS = -22A, VGS = 0V ④
trr	Reverse Recovery Time			—	740	ns	Tj = 25°C, IF = -22A, di/dt ≤ -100A/μs
QRR	Reverse Recovery Charge		—		7.0	μC	V _{DD} ≤ -50V ④
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible. Tum-on speed is substantially controlled by LS + LD.					

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{th} JC	Junction-to-Case	_		0.83	K/W®	
RthJ-PCB	Junction-to-PC Board	_		TBD	1/1/10	Soldered to a copper clad PC board

IRHN9150 Device

Radiation Performance of P-Channel Rad Hard HEXFETs

International Rectifier Radiation Hardened HEX-FETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier uses two radiation environments.

Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019. International Rectifier has imposed a standard gate voltage of -12 volts per note 6 and a V_{DSS} bias condition equal to 80% of the device rated voltage per note 7. Pre- and post-radiation limits of the devices irradiated to 1 x 10⁵ Rads (Si) are identical and are presented in Table 1. The values in Table 1 will be met for either of the two low dose rate test circuits that are used.

Both pre- and post-radiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. It should be noted that at a radiation level of 1×10^5 Rads (Si), no change in limits are specified in DC parameters.

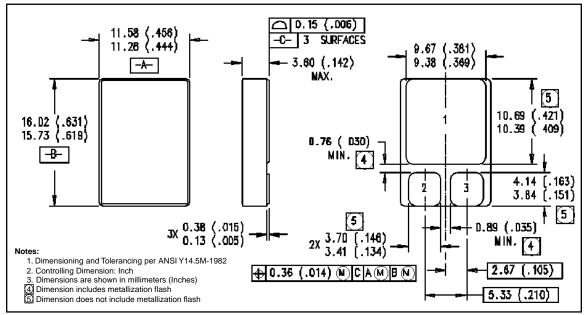
High dose rate testing may be done on a special request basis, using a dose rate up to 1×10^{12} Rads (Si)/Sec.

International Rectifier radiation hardened P-Channel HEXFETs are considered to be neutron-tolerant, as stated in MIL-PRF-19500 Group D. International Rectifier P-Channel radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects (SEE) environment and results are shown in Table 3.

			19100				
Parameter		100K	Rads (Si)	Units	Test Conditions ®		
		min.	max.				
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	—	V	$V_{GS} = 0V, I_D = -1.0 \text{ mA}$		
V _{GS(th)}	GateThreshold Voltage ④	-2.0	-4.0		$V_{GS} = V_{DS}, I_{D} = -1.0 \text{ mA}$		
I _{GSS}	Gate-to-Source Leakage Forward	-	-100	nA	V _{GS} = -20V		
I _{GSS}	Gate-to-Source Leakage Reverse	—	100	1	V _{GS} = +20V		
IDSS	Zero Gate Voltage Drain Current	-	-25	μΑ	$V_{DS} = 0.8 \text{ x} \text{ Max} \text{ Rating}, V_{GS} = 0 \text{V}$		
R _{DS(on)1}	Static Drain-to-Source ④	-	0.120	Ω	V _{GS} = -12V, I _D = -14A		
	On-State Resistance One						
V _{SD}	Diode Forward Voltage ④	-	-3.6	V	$T_{C} = 25^{\circ}C, I_{S} = -22 V_{GS} = 0V$		

Table 2. High Dose Rate (8)

	1011 F	10 ¹¹ Rads (Si)/sec 10 ¹² Rads (Si)/sec						
Parameter	Min.	Тур	Max.	Min.	Тур.	Max.	Units	Test Conditions
VDSS Drain-to-Source Voltage	—	—	-80	—	—	-80	V	Applied drain-to-source voltage
								during gamma-dot
IPP	—	-100	_	_	-100		A	Peak radiation induced photo-current
di/dt	—		-800			-160	A/µsec	Rate of rise of photo-current
L ₁	0.1	—	_	0.5	—	_	μH	Circuit inductance required to limit di/dt


Table 3. Single Event Effects (9)

	т.,,	L la lta	Law	LET (Si)	Fluence	Range	V _{DS} Bias	V _{GS} Bias
Parameter	Тур.	Units	Ion	on (MeV/mg/cm ²)	(ions/cm ²)	(µm)	(V)	(V)
BVDSS	-100	V	Ni	28	1 x 10⁵	~41	-100	+5

IRHN9150 Device

- Repetitive Rating; Pulse width limited by maximum junction temperature. Refer to current HEXFET reliability report.
- ② VDD = -25V, Starting TJ = 25°C, EAS = [0.5 * L * (I_L²) * [BVDSS/(BVDSS-VDD)] Peak IJ = -22A, VGS = -12V, 25 ≤ RG ≤ 200Ω
- $\label{eq:ISD} \begin{array}{l} \$l_{SD} \leq \text{-22A, di/dt} \leq \text{-140A/}\mu s, \\ \texttt{V}_{DD} \leq \texttt{BV}_{DSS}, \texttt{T}_J \leq 150^\circ\texttt{C} \\ \texttt{Suggested RG} = 2.35\Omega \end{array}$
- ④ Pulse width \leq 300 µs; Duty Cycle \leq 2%
- ⑤ K/W = °C/W
- W/K = W/°C

- **Radiation Characteristics**
- ⑥ Total Dose Irradiation with VGS Bias. -12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019.
- ⑦ Total Dose Irradiation with VDS Bias. VDS = 0.8 rated BVDSS (pre-radiation) applied and VGS = 0 during irradiation per MIL-STD-750, method 1019.
- ⑧ This test is performed using a flash x-ray source operated in the e-beam mode (energy-2.5 MeV), 30 nsec pulse.
- ③ Study sponsored by NASA. Evaluation performed at Brookhaven National Labs.
- IP All Pre-Radiation and Post-Radiation test conditions are identical to facilitate direct comparison for circuit applications.

CAUTION BERYLLIA WARNING PER MIL-PRF-19500

Packages containing beryllia shall not be ground, sandblasted, machined, or have other operations performed on them which will produce beryllia or beryllium dust. Furthermore, beryllium oxides packages shall not be placed in acids that will produce fumes containing beryllium.

International **ICR** Rectifier

Case Outline and Dimensions — SMD-1