Provisional Data Sheet 的, PD-9.1433

International TOR Rectifier

REPETITIVE AVALANCHE AND dv/dt RATED HEXFET® TRANSISTOR

IRHNA9160

P-CHANNEL RAD HARD

-100Volt, 0.087Ω, RAD HARD HEXFET

International Rectifier's P-Channel RAD HARD technology HEXFETs demonstrate excellent threshold voltage stability and breakdown voltage stability at total radiation doses as high as 105 rads (Si). Under identical pre- and post-radiation test conditions, International Rectifier's P-Channel RAD HARD HEXFETs retain identical electrical specifications up to 1 x 10⁵ Rads (Si) total dose. No compensation in gate drive circuitry is required. These devices are also capable of surviving transient ionization pulses as high as 1 x 10¹² Rads (Si)/Sec, and return to normal operation within a few microseconds. Single Event Effect (SEE) testing of International Rectifier's P-Channel RAD HARD HEXFETs has demonstrated virtual immunity to SEE failure. Since the RAD HARD process utilizes International Rectifier's patented HEXFET technology, the user can expect the highest quality and reliability in the industry.

P- Channel RAD HARD HEXFET transistors also feature all of the well-established advantages of MOSFETs, such as voltage control, very fast switching, ease of paralleling and temperature stability of the electrical parameters. They are well-suited for applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high-energy pulse circuits in space and weapons environments.

Product Summary

Part Number	BVDSS	RDS(on)	lD
IRHNA9160	-100V	0.087Ω	-38A

Features:

- Radiation Hardened up to 1 x 10⁵ Rads (Si)
- Single Event Burnout (SEB) Hardened
- Single Event Gate Rupture (SEGR) Hardened
- Gamma Dot (Flash X-Ray) Hardened
- Neutron Tolerant
- Identical Pre- and Post-Electrical Test Conditions
- Repetitive Avalanche Rating
- Dynamic dv/dt Rating
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Surface Mount
- Lightweight

Absolute Maximum Ratings

Pre-Radiation

	Parameter	IRHNA9160	Units
ID @ VGS = -12V, TC = 25°C	Continuous Drain Current	-38	
$I_D @ V_{GS} = -12V, T_C = 100^{\circ}C$	Continuous Drain Current	-24	A
IDM	Pulsed Drain Current ①	-152	
P _D @ T _C = 25°C	Max. Power Dissipation	300	W
ALON LIFE	Linear Derating Factor	2.4	W/K®
VGS	Gate-to-Source Voltage	±20	V
EAS	Single Pulse Avalanche Energy ②	500	mJ
IAR	Avalanche Current①	-38	Α
EAR	Repetitive Avalanche Energy ①	30	mJ
dv/dt	Peak Diode Recovery dv/dt 3	-5.5	V/ns
· · · · · · · · · · · · · · · · · · ·	Operating Junction	-55 to 150	
#库-TSTG-	Storage Temperature Range		°C
pdf.dzsc.com	Package Mounting Surface Temperature	300 (for 5 sec.)	
	Weight	3.3 (typical)	g

IRHNA9160 Device Pre-Radiation

Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

	Parameter		Тур.	Max.	Units	Test Conditions	i	
BVDSS	Drain-to-Source Breakdown Voltage	-100	_	_	V	VGS = 0V, ID = -1.0	mA	
ΔBVDSS/ΔTJ	Temperature Coefficient of Breakdown Voltage	_	-0.13	_	V/°C	Reference to 25°C, ID =		
RDS(on)	Static Drain-to-Source	_		0.087		VGS = -12V, ID = -2	4A	
	On-State Resistance	_	_	0.010	Ω	VGS = -12V, ID = -3	8A [⊕]	
VGS(th)	GateThresholdVoltage	-2.0	_	-4.0	V	VDS = VGS, ID = -1.0) mA	
gfs	Forward Transconductance	10	_	_	S (7)	VDS > -15V, IDS = -24		
IDSS	Zero Gate Voltage Drain Current	_		-25		VDS = 0.8 x Max Rating,V		
		_	_	-250	μΑ	VDS = 0.8 x Max Ra	ting	
						$VGS = 0V, TJ = 125^{\circ}C$		
IGSS	Gate-to-Source Leakage Forward	_	_	-100	nA	VGS = -20V		
IGSS	Gate-to-Source Leakage Reverse	_	_	100	11/4	VGS = 20V		
Qg	Total Gate Charge			200		VGS =-12V, ID = -38	8A	
Qgs	Gate-to-Source Charge	_	_	50	nC	VDS = Max. Rating x 0.5		
Qgd	Gate-to-Drain ("Miller") Charge	_	_	90				
td(on)	Turn-On Delay Time	_	_	70		$V_{DD} = -100V, I_{D} = -38$	8A,	
tr	Rise Time	_	_	240	ns	$RG = 2.35\Omega$		
td(off)	Turn-Off Delay Time	_	_	220	1115			
tf	FallTime	_	_	150				
LD	Internal Drain Inductance	_	8.7	_	nH	Measured from the drain lead, 6mm (0.25 in.) from package to center of die. Modified MOSFI symbol showing internal inductance of the symbol showing inductance of the symb		
Ls	Internal Source Inductance	_	8.7	_	1111	Measured from the source lead, 6mm (0.25 in.) from package to source bonding pad.	L _S	
C _{iss}	Input Capacitance		7000	_		VGS = 0V, VDS = -2	5V	
Coss	Output Capacitance		2000	_	pF	f = 1.0 MHz		
C _{rss}	Reverse Transfer Capacitance	_	500	_				

Source-Drain Diode Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Is	Continuous Source Current (Body Diode)	_	_	-38	Α	Modified MOSFET symbol showing the
ISM	Pulse Source Current (Body Diode) *	_	_	-152	,	integral reverse p-n junction rectifier.
VSD	Diode Forward Voltage	†_	<u> </u>	-3.3	V	T _i = 25°C, I _S = -38A, V _{GS} = 0V ④
trr	Reverse Recovery Time	 	 - 	775	ns	$T_j = 25^{\circ}C$, $I_F = -38A$, $di/dt \le -100A/\mu s$
QRR	Reverse Recovery Charge	-	_	5.0	μС	V _{DD} ≤ -50V ④
ton	ForwardTurn-OnTime Intrinsic turn-	Intrinsic turn-on time is n				peed is substantially controlled by Ls + Lp.

Thermal Resistance

	Parameter		Тур.	Max.	Units	Test Conditions
R _{th} JC	Junction-to-Case	_	_	0.42	K/W (5)	
R _{thJ-PCB}	Junction-to-PC board	_	TBD		IVVV ®	soldered to a copper-clad PC board

IRHNA9160 Device

Radiation Characteristics

Radiation Performance of P-Channel Rad Hard HEXFETs

International Rectifier Radiation Hardened HEXFETs are tested to verify their hardness capability. The hardness assurance program at International Rectifier uses two radiation environments.

Every manufacturing lot is tested in a low dose rate (total dose) environment per MIL-STD-750, test method 1019. International Rectifier has imposed a standard gate voltage of -12 volts per note 6 and a V_{DSS} bias condition equal to 80% of the device rated voltage per note 7. Pre- and post-radiation limits of the devices irradiated to 1 x 10⁵ Rads (Si) are identical and are presented in Table 1. The values in Table 1 will be met for either of the two low dose rate test circuits that are used. Both pre- and post-radiation performance

are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. It should be noted that at a radiation level of 1 x 10^5 Rads (Si), no change in limits are specified in DC parameters.

High dose rate testing may be done on a special request basis, using a dose rate up to 1 x 10¹² Rads (Si)/Sec.

International Rectifier radiation hardened P-Channel HEXFETs are considered to be neutron-tolerant, as stated in MIL-PRF-19500 Group D. International Rectifier radiation hardened HEXFETs have been characterized in heavy ion Single Event Effects environment and the results are shown in Table 3.

Table 1. Low Dose Rate © 7 IRHNA9160

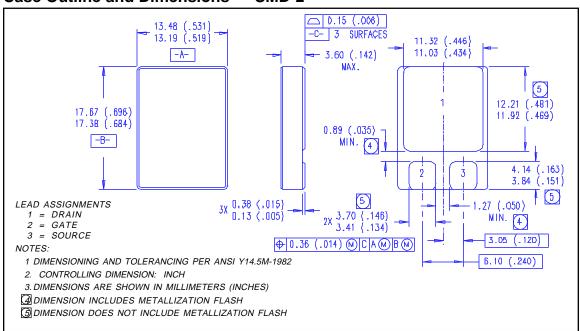
	ion bood nate e e		, 10 . 00			
	100K Rads (Si)		Units	Test Conditions ®		
		min.	max.			
BV _{DSS}	Drain-to-Source Breakdown Voltage	-100	_	V	$V_{GS} = 0V$, $I_D = -1.0 \text{ mA}$	
V _{GS(th)}	GateThresholdVoltage 4	-2.0	-4.0		$VGS = V_{DS}$, $I_D = -1.0 \text{ mA}$	
IGSS	Gate-to-Source Leakage Forward	_	-100	nA	$V_{GS} = -20V$	
I _{GSS}	Gate-to-Source Leakage Reverse	_	100		$V_{GS} = 20V$	
I _{DSS}	Zero Gate Voltage Drain Current	_	-25	μΑ	$V_{DS} = 0.8 \text{ x Max Rating}, V_{GS} = 0V$	
R _{DS(on)1}	Static Drain-to-Source @	_	0.087	Ω	$VGS = -12V, I_D = -24A$	
	On-State Resistance One					
V _{SD}	Diode Forward Voltage ④	_	-3.3	V	$T_C = 25^{\circ}C$, $I_S = -38A$, $V_{GS} = 0V$	

Table 2. High Dose Rate ®

	10 ¹¹ F	10 ¹¹ Rads (Si)/sec 10 ¹² Rads (Si)/sec			Si)/sec					
Parameter	Min.	Тур	Max.	Min.	Тур.	Max.	Units	Test Conditions		
VDSS Drain-to-SourceVo	oltage —	_	-80	_	_	-80	V	Applied drain-to-source voltage		
								during gamma-dot		
lpp		-100	_	_	-100	_	Α	Peak radiation induced photo-current		
di/dt		-800	—	_	-160	_	A/μsec	Rate of rise of photo-current		
L ₁	0.1	_	_	0.5	_	_	μH	Circuit inductance required to limit di/dt		

Table 3. Single Event Effects 9

Parameter	Тур.	Units	Ion	LET (Si) (MeV/mg/cm²)	Fluence (ions/cm²)	Range (μm)	V _{DS} Bias (V)	V _{GS} Bias (V)
BVDSS	-100	V	Ni	28	1 x 10 ⁵	~41	-100	5


IRHNA9160SE Device

Radiation Characteristics

- Repetitive Rating; Pulse width limited by maximum junction temperature.
 Refer to current HEXFET reliability report.
- $\begin{tabular}{ll} @ V_{DD} = -25V, Starting $T_J = 25^\circ$C, \\ E_AS = [0.5 * L * (I_L^2) * [BV_DSS/(BV_DSS-V_DD)] \\ Peak $I_L = -38A, V_{GS} = -12V, 25 \le R_G \le 200\Omega $... \\ \end{tabular}$
- ③ I_{SD} ≤ -38A, di/dt ≤ -170 A/ μ s, V_{DD} ≤ BV_{DSS}, T_J ≤ 150°C Suggested RG = 2.35 Ω
- ④ Pulse width ≤ 300 μs; Duty Cycle ≤ 2%

- ⑥ Total Dose Irradiation with VGS Bias. -12 volt VGS applied and VDS = 0 during irradiation per MIL-STD-750, method 1019.
- Total Dose Irradiation with Vps Bias. Vps = 0.8 rated BVpss (pre-radiation) applied and Vgs = 0 during irradiation per MIL-STD-750, method 1019.
- ® This test is performed using a flash x-ray source operated in the e-beam mode (energy ~2.5 MeV), 30 nsec pulse.
- 9 Process characterized by independent laboratory.
- All Pre-Radiation and Post-Radiation test conditions are identical to facilitate direct comparison for circuit applications.

Case Outline and Dimensions — SMD-2

International TOR Rectifier

WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590

IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111

IR FAR EAST: K&H Bldg., 2F, 3-30-4 Nishi-Ikeburo 3-Chome, Toshima-Ki, Tokyo Japan 171 Tel: 81 3 3983 0086
IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371