256K x 8 HIGH-SPEED CMOS STATIC RAM

FEATURES

- High-speed access time: $8,10 \mathrm{~ns}$
- Operating Current: 50mA (typ.)
- Standby Current: 700 A (typ.)
- Multiple center power and ground pins for greater noise immunity
- Easy memory expansion with $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ options
- $\overline{\mathrm{CE}}$ power-down
- TTL compatible inputs and outputs
- Single 3.3V power supply
- Packages available:
- 36-pin 400-mil SOJ
- 44-pin TSOP (Type II)
- Lead-free available

DESCRIPTION

The ISSI IS61LV2568L is a very high-speed, low power, 262,144-word by 8-bit CMOS static RAM. The IS61LV2568L is fabricated using ISSI's high-performance CMOS technology. This highly reliable process coupled with innovative circuit design techniques, yields higher performance and low power consumption devices.
When $\overline{\text { CE }}$ is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down to 36 mW (max.) with CMOS input levels.
The IS61LV2568L operates from a single 3.3V power supply and all inputs are TTL-compatible.
The IS61LV2568L is available in 36 -pin 400 -mil SOJ and 44-pin TSOP (Type II) packages.

FUNCTIONAL BLOCK DIAGRAM

Copyright © 2005 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

PIN CONFIGURATION

36-Pin SOJ

44-Pin TSOP (Type II)

PIN DESCRIPTIONS

A0-A17	Address Inputs
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\mathrm{WE}}$	Write Enable Input
I/OO-I/O7	Bidirectional Ports
VDD	Power
GND	Ground
NC	No Connection

TRUTH TABLE

Mode	$\overline{\text { WE }}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	I/O Operation	Vod Current
Not Selected (Power-down)	X	H	X	High-Z	IsB1, IsB2
Output Disabled	H	L	H	High-Z	Icc
Read	H	L	L	Dout	Icc
Write	L	L	X	Din	Icc

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Parameter	Value	Unit
VDD	Supply voltage with Respect to GND	-0.5 to +4.0	V
VTERM	Terminal Voltage with Respect to GND	-0.5 to VDD +0.5	V
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
PD	Power Dissipation	1.0	W

Notes:

1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vdd (8ns)	Vdd (10 ns)
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V}+10 \%,-5 \%$	$3.3 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$3.3 \mathrm{~V} \pm 10 \%$

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
VoH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{IOH}=-4.0 \mathrm{~mA}$	2.4	-	V
Vol	Output LOW Voltage	V DD $=$ Min., $\mathrm{lol}=8.0 \mathrm{~mA}$	-	0.4	V
VIH	Input HIGH Voltage ${ }^{(1)}$		2.0	VdD +0.3	V
VIL	Input LOW Voltage ${ }^{(1)}$		-0.3	0.8	V
ILI	Input Leakage	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$	-1	1	$\mu \mathrm{A}$
ILo	Output Leakage	GND \leq Vout \leq VDD, Outputs Disabled	-1	1	$\mu \mathrm{A}$

Note:

1. $\mathrm{VIL}(\min)=-0.3 \mathrm{~V}(\mathrm{DC}) ; \mathrm{VIL}^{(\min)}=-2.0 \mathrm{~V}$ (pulse width $\left.-2.0 \mathrm{~ns}\right)$.
$\mathrm{V}_{\mathrm{H}}(\max)=\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}(\mathrm{DC}) ; \mathrm{V}_{\mathrm{H}}($ max $)=\mathrm{V}_{\mathrm{DD}}+2.0 \mathrm{~V}$ (pulse width $\left.-2.0 \mathrm{~ns}\right)$.

POWER SUPPLY CHARACTERISTICS ${ }^{(1)}$ (Over Operating Range)

Symbol	Parameter Vod Operating Supply Current	Test Conditions		$\begin{array}{r} -8 \\ \text { Min. } \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { Max. } \end{aligned}$	$\begin{gathered} -10 \\ \text { Min. } \end{gathered}$	ns Max.	Unit
Icc		$\begin{aligned} & \text { VDD }=\text { Max., } \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \\ & \text { lout }=0 \mathrm{~mA}, \mathrm{f}=\text { Max. } \end{aligned}$	$\begin{aligned} & \text { Com. } \\ & \text { Ind. } \\ & \text { typ. } \end{aligned}$	- -	65 50	-	$\begin{aligned} & 60 \\ & 65 \\ & 50 \end{aligned}$	mA
IsB1	TTL Standby Current (TTL Inputs)	$\begin{aligned} & \text { VDD }=\text { Max., } \\ & \text { VIN }=\text { VIH or }^{\text {VIL }} \\ & \overline{\mathrm{CE}} \geq \mathrm{VIH}_{1}, f=\max \end{aligned}$	Com. Ind.	-	30	-	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	mA
IsB2	CMOS Standby Current (CMOS Inputs)	$\begin{aligned} & \mathrm{VDD}=\operatorname{Max} ., \\ & \overline{\mathrm{CE}} \geq \mathrm{VDD}-0.2 \mathrm{~V}, \\ & \mathrm{VIN} \geq \mathrm{VDD}-0.2 \mathrm{~V}, \text { or } \\ & \mathrm{VIN} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com. Ind. typ. ${ }^{(2)}$	- -	3 700	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{gathered} 3 \\ 4 \\ 700 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mu \mathrm{~A} \end{aligned}$

Note:

1. At $f=f M A X$, address and data inputs are cycling at the maximum frequency, $f=0$ means no input lines change.
2. Typical values are measured at $\mathrm{V} D \mathrm{D}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Not 100% tested.

CAPACITANCE ${ }^{(1,2)}$

Symbol	Parameter	Conditions	Max.	Unit
CIN	Input Capacitance	Vin $=0 \mathrm{~V}$	6	pF
CI/O	Input/Output Capacitance	Vout $=0 \mathrm{~V}$	8	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: $T_{A}=25^{\circ} \mathrm{C}, f=1 \mathrm{MHz}, \mathrm{VDD}=3.3 \mathrm{~V}$.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0 V to 3.0 V
Input Rise and Fall Times	3 ns
Input and Output Timing and Reference Levels	1.5 V
Output Load	See Figures 1 and 2

AC TEST LOADS

Figure 1

Figure 2

READ CYCLE SWITCHING CHARACTERISTICS ${ }^{(1)}$ (Over Operating Range)

Symbol	Parameter	- 8 ns		-10 ns		Unit
		Min.	Max	Min.	Max.	
trc	Read Cycle Time	8	-	10	-	ns
tAA	Address Access Time	-	8	-	10	ns
toha	Output Hold Time	2.5	-	2.5	-	ns
tace	$\overline{\mathrm{CE}}$ Access Time	-	8	-	10	ns
tooe	$\overline{\mathrm{OE}}$ Access Time	-	3.5	-	4	ns
tızoE ${ }^{(2)}$	$\overline{\mathrm{OE}}$ to Low-Z Output	0	-	0	-	ns
thzoE ${ }^{(2)}$	$\overline{\mathrm{OE}}$ to High-Z Output	0	3.5	0	4	ns
tızcE ${ }^{(2)}$	$\overline{\mathrm{CE}}$ to Low-Z Output	3.5	-	3	-	ns
thzCE ${ }^{(2)}$	$\overline{\mathrm{CE}}$ to High-Z Output	0	3.5	0	4	ns

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading specified in Figure 1.
2. Tested with the load in Figure 2. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage. Not 100% tested.

AC WAVEFORMS

READ CYCLE NO. $1^{(1,2)}$ (Address Controlled) $(\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{V} \mathrm{IL})$

READ CYCLE NO. $\mathbf{2}^{(1,3)}$ ($\overline{C E}$ and $\overline{\mathrm{OE}}$ Controlled)

Notes:

1. $\overline{\text { WE }}$ is HIGH for a Read Cycle.
2. The device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{VIL}$.
3. Address is valid prior to or coincident with $\overline{C E}$ LOW transitions.

WRITE CYCLE SWITCHING CHARACTERISTICS ${ }^{(1,2)}$ (Over Operating Range)

Symbol	Parameter	-8 ns		$-10 \mathrm{~ns}$		Unit
		Min.	Max	Min.	Max.	
twc	Write Cycle Time	8	-	10	-	ns
tsce	$\overline{\mathrm{CE}}$ to Write End	7	-	8	-	ns
taw	Address Setup Time to Write End	7	-	8	-	ns
tha	Address Hold from Write End	0	-	0	-	ns
tsA	Address Setup Time	0	-	0	-	ns
tpwe1	$\overline{\text { WE }}$ Pulse Width ($\overline{\mathrm{OE}}=\mathrm{HIGH}$)	6	-	7	-	ns
tPWE2	$\overline{\text { WE }}$ Pulse Width ($\overline{O E}=$ LOW $)$	6.5	-	8	-	ns
tso	Data Setup to Write End	4	-	5	-	ns
thd	Data Hold from Write End	0	-	0	-	ns
thzwE ${ }^{(3)}$	$\overline{\text { WE L L }}$ LOW to High-Z Output	-	3	-	4	ns
tLzwE ${ }^{(3)}$	$\overline{\text { WE }}$ HIGH to Low-Z Output	0	-	0	-	ns

Notes:

1. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading specified in Figure 1.
2. The internal write time is defined by the overlap of $\overline{C E}$ LOW and $\overline{W E}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the Write.
3. Tested with the load in Figure 2. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage. Not 100% tested.

AC WAVEFORMS

WRITE CYCLE NO. $1^{(1,2)}(\overline{C E}$ Controlled, $\overline{\mathrm{OE}}=\mathrm{HIGH}$ or LOW)

Note:

1. The internal Write time is defined by the overlap of $\overline{C E}=L O W$ and $\overline{W E}=L O W$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The Data Input Setup and Hold timing is referenced to the rising or falling edge of the signal that terminates the Write.

AC WAVEFORMS

WRITE CYCLE NO. $2^{(1)}(\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}=\mathrm{HIGH}$ during Write Cycle)

Note:

1. The internal Write time is defined by the overlap of $\overline{C E}=L O W$ and $\overline{W E}=L O W$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The Data Input Setup and Hold timing is referenced to the rising or falling edge of the signal that terminates the Write.

WRITE CYCLE NO. 3 ($\overline{\text { WE }}$ Controlled: $\overline{\mathrm{OE}}$ is LOW During Write Cycle)

Note:

1. The internal Write time is defined by the overlap of $\overline{\mathrm{CE}}=\mathrm{LOW}$ and $\overline{\mathrm{WE}}=\mathrm{LOW}$. All signals must be in valid states to initiate a Write, but any can be deasserted to terminate the Write. The Data Input Setup and Hold timing is referenced to the rising or falling edge of the signal that terminates the Write.

ORDERING INFORMATION

Commercial Range: $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$

Speed (ns)	Order Part No.	Package
8	IS61LV2568L-8K	400-mil SOJ
	IS61LV2568L-8T	TSOP (Type II)
10	IS61LV2568L-10T	TSOP (Type II)
	IS61LV2568L-10TL	TSOP (Type II), Lead-free

Industrial Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Speed (ns)	Order Part No.	Package
10	IS61LV2568L-10KI	$400-$ mil SOJ
	IS61LV2568L-10KLI	$400-$ mil SOJ, Lead-free

400-mil Plastic SOJ

Package Code: K

Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Symbol	Millimeters		Inches		Millimeters		Inches		Millimeters		Inches	
	Min	Max										
No. Leads	(N) 40				42				44			
A	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148	3.25	3.75	0.128	0.148
A1	0.64	-	0.025	-	0.64	-	0.025	-	0.64	-	0.025	-
A2	2.08	-	0.082	-	2.08	-	0.082	-	2.08	-	0.082	-
B	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020	0.38	0.51	0.015	0.020
b	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032	0.66	0.81	0.026	0.032
C	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013	0.18	0.33	0.007	0.013
D	25.91	26.16	1.020	1.030	27.18	27.43	1.070	1.080	28.45	28.70	1.120	1.130
E	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445	11.05	11.30	0.435	0.445
E1	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405	10.03	10.29	0.395	0.405
E2	9.40 BSC		0.370 BSC		9.40 BSC		0.370 BSC		9.40 BSC		0.370 BSC	
e	1.27 BSC		0.050 BSC		1.27 BSC		0.050 BSC		1.27 BSC		0.050 BSC	

Plastic TSOP

Package Code: T (Type II)

[^0] without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.

Rev. F

[^0]: Copyright © 2003 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time

