
N-Channel Enhancement Mode MOSFET General Purpose Amplifier Switch

IT1750

FEATURES

- Low ON Resistance
- Low C_{dg}
- High Gain
- Low Threshold Voltage

ABSOLUTE MAXIMUM RATINGS

 $(T_A = 25^{\circ}C \text{ unless otherwise specified})$

Drain-Source and Gate-Source Voltage	25V
Peak Gate-Source Voltage (Note 1)	±125V
Drain Current	. 100mA
Storage Temperature Range65°C to	o +200°C
Operating Temperature Range65°C to	o +150°C
Lead Temperature (Soldering, 10sec)	. +300°C
Power Dissipation	
Derate above 25°C	3mW/°C

NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ORDERING INFORMATION

Part	Package	Temperature Range
IT1750	Hermetic TO-72	-55°C to +150°C
XIT1750	Sorted Chips in Carriers	-55°C to +150°C

ELECTRICAL CHARACTERISTICS (T_A = 25°C, Body connected to Source and V_{BS} = 0 unless otherwise specified)

SYMBOL	PARAMETER	MIN	MAX	UNITS	TEST CONDITIONS
V _{GS(th)}	Gate to Source Threshold Voltage	0.50	3.0	V	$V_{DS} = V_{GS}$, $I_D = 10\mu A$
I _{DSS}	Drain Leakage Current		10	nA	V _{DS} = 10V, V _{GS} = 0
Igss	Gate Leakage Current	(See note 2)			一一一一一一
BV _{DSS}	Drain Breakdown Voltage	25		V	$I_D = 10\mu A, V_{GS} = 0$
r _{DS(on)}	Drain to Source on Resistance		50	ohms	V _G S = 20V
I _{D(on)}	Drain Current	10	70.	mA	V _{DS} = V _{GS} =10V
Yfs	Forward Transadmittance	3,000	- M/6	μS	V _{DS} = 10V, I _D = 10mA, f = 1kHz
Ciss	Total Gate Input Capacitance	COM	6.0	pF	$I_D = 10$ mA, $V_{DS} = 10$ V, $f = 1$ MHz (Note 3)
C _{dg}	Gate to Drain Capacitance	50	1.6	pF	V _{DG} = 10V, f = 1MHz (Note 3)

NOTES: 1. Devices must not be tested at ±125V more than once nor longer than 300ms.

- 2. Actual gate current is immeasurable. Package suppliers are required to guarantee a package leakage of < 10pA.

 External package leakage is the dominant mode which is sensitive to both transient and storage environment, which cannot be guaranteed.
- 3. For design reference only, not 100% tested.

