TOSHIBA FIELD EFFECT TRANSISTOR SILICON P CHANNEL MOS TYPE # 2 S J 3 3 8 #### AUDIO FREQUENCY POWER AMPLIFIER APPLICATION High Breakdown Voltage $: V_{DSS} = -180V$ High Forward Transfer Admittance : $|Y_{fs}| = 0.7S$ (Typ.) Complementary to 2SK2162 ### MAXIMUM RATINGS (Ta = 25°C) | CHARACTERISTIC | SYMBOL | RATING | UNIT | |-----------------------------|--------------------|---------|------| | Drain-Source Voltage | $ m V_{DSS}$ | -180 | V | | Gate-Source Voltage | v_{GSS} | ±20 | V | | Drain Current | $I_{\mathbf{D}}$ | -1 | A | | Power Dissipation (Tc=25°C) | $P_{\mathbf{D}}$ | 20 | W | | Channel Temperature | $\mathrm{T_{ch}}$ | 150 | °C | | Storage Temperature Range | $\mathrm{T_{stg}}$ | -55~150 | °C _ | #### **MARKING** f.dzsc.com ### INDUSTRIAL APPLICATIONS Unit in mm **2SJ338** Weight: 0.36g TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook. The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others. TOSHIBA 2SJ338 ## ELECTRICAL CHARACTERISTICS (Ta = 25°C) | CHARACTERISTIC | SYMBOL | TEST CONDITION | MIN. | TYP. | MAX. | UNIT | |------------------------------------|---------------------------------|---------------------------------------|------|------|------|------| | Gate Leakage Current | IGSS | $V_{DS} = 0, V_{GS} = \pm 20V$ | _ | _ | ±100 | nA | | Drain-Source
Breakdown Voltage | V _(BR) DSS | $I_D = -10 \text{mA}, V_{GS} = 0$ | -180 | _ | _ | V | | Gate -Source Cut-off Current | V _{GS} (OFF)
(Note) | $V_{DS} = -10V, I_D = -10mA$ | -0.8 | _ | -2.8 | V | | Drain-Source Saturation
Voltage | V _{DS} (ON) | $I_D = -0.6A, V_{GS} = -10V$ | _ | -1.2 | -3.0 | V | | Forward Transfer
Admittance | $ Y_{fs} $ | $V_{DS} = -10V, I_D = -0.3A$ | _ | 0.7 | _ | S | | Input Capacitance | C_{iss} | $V_{DS} = -10V, V_{GS} = 0, f = 1MHz$ | _ | 210 | _ | рF | | Output Capacitance | Coss | $V_{DS} = -10V, V_{GS} = 0, f = 1MHz$ | _ | 90 | | pF | | Reverse Transfer
Capacitance | $\mathrm{C}_{\mathrm{rss}}$ | $V_{DS} = -10V, V_{GS} = 0, f = 1MHz$ | _ | 45 | _ | pF | (Note) VGS (OFF) Classification O : $-0.8 \sim -1.6$, Y : $-1.4 \sim -2.8$ This transistor is the electrostatic sensitive device. Plese handle with caution.