Complementary Silicon Plastic Power Transistors

WWW.DZSC.COM

- . . . designed for use as high-frequency drivers in audio amplifiers.
- DC Current Gain Specified to 4.0 Amperes

 $h_{FE} = 40 \text{ (Min)} @ I_{C} = 3.0 \text{ Adc}$

= 20 (Min) @ I_C = 4.0 Adc

Collector–Emitter Sustaining Voltage —

VCEO(sus) = 120 Vdc (Min) — MJE15028, MJE15029 = 150 Vdc (Min) — MJE15030, MJE15031

- High Current Gain Bandwidth Product
 f_T = 30 MHz (Min) @ I_C = 500 mAdc
- TO-220AB Compact Package

MAXIMUM RATINGS

Rating	Symbol	MJE15028 MJE15029	MJE15030 MJE15031	Unit
Collector–Emitter Voltage	VCEO	120	150	Vdc
Collector–Base Voltage	VCB	120 150		Vdc
Emitter-Base Voltage	V _{EB}	5.0		Vdc
Collector Current — Continuous — Peak	IC	8.0 16		Adc
Base Current	ΙB	2.0		Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	50 0.40		Watts W/°C
Total Power Dissipation @ T _A = 25°C Derate above 25°C	PD	2.0 0.0 <mark>16</mark>		Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-65 to +150		°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.5	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	62.5	°C/W

Preferred devices are Motorola recommended choices for future use and best overall value.

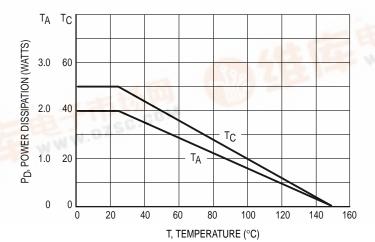


Figure 1. Power Derating

MJE15028*
MJE15030*
MJE15029*
MJE15031*

*Motorola Preferred Device

8 AMPERE
POWER TRANSISTORS
COMPLEMENTARY
SILICON
120-150 VOLTS
50 WATTS

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					•
Collector–Emitter Sustaining Voltage (1) (I _C = 10 mAdc, I _B = 0)	MJE15028, MJE15029 MJE15030, MJE15031	VCEO(sus)	120 150	_	Vdc
Collector Cutoff Current ($VCE = 120 \text{ Vdc}, IB = 0$) ($VCE = 150 \text{ Vdc}, IB = 0$)	MJE15028, MJE15029 MJE15030, MJE15031	ICEO		0.1 0.1	mAdc
Collector Cutoff Current ($V_{CB} = 120 \text{ Vdc}, I_{E} = 0$) ($V_{CB} = 150 \text{ Vdc}, I_{E} = 0$)	MJE15028, MJE15029 MJE15030, MJE15031	I _{CBO}	_ _	10 10	μAdc
Emitter Cutoff Current (VBE = 5.0 Vdc, I _C = 0)		l _{EBO}	_	10	μAdc
ON CHARACTERISTICS (1)					_
DC Current Gain ($I_C = 0.1 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) ($I_C = 2.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) ($I_C = 3.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$) ($I_C = 4.0 \text{ Adc}$, $V_{CE} = 2.0 \text{ Vdc}$)		hFE	40 40 40 20	 - - -	_
DC Current Gain Linearity (V _{CE} From 2.0 V to 20 V, I _C From 0.1 A to 3 A) (NPN TO PNP)		hFE	2	/p 2 3	
Collector–Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 0.1 Adc)		V _{CE(sat)}	_	0.5	Vdc
Base–Emitter On Voltage (I _C = 1.0 Adc, V _{CE} = 2.0 Vdc)		VBE(on)	_	1.0	Vdc
DYNAMIC CHARACTERISTICS					
Current Gain — Bandwidth Product (2) (I _C = 500 mAdc, V _{CE} = 10 Vdc, f _{test} = 10 MHz)		fΤ	30	_	MHz

⁽¹⁾ Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

⁽²⁾ $f_T = |h_{fe}| \cdot f_{test}$.

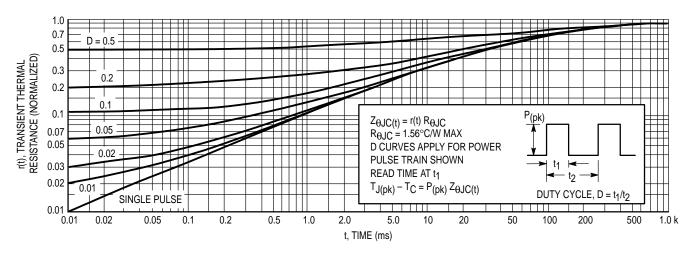


Figure 2. Thermal Response

0 M. J. D. J. D. T. J. C. D. J. D.

IC, COLLECTOR CURRENT (AMP) 1.0 BONDING WIRE LIMITED THERMALLY LIMITED SECOND BREAKDOWN LIMITED @ T_C = 25°C 0.1 MJE15028 MJE15029-MJE15030 MJE15031 0.02 120 150 2.0 5.0 10 20 50 V_{CF}, COLLECTOR-EMITTER VOLTAGE (VOLTS)

Figure 3. Forward Bias Safe Operating Area

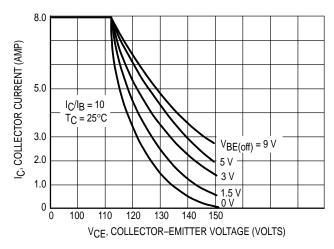


Figure 4. Reverse-Bias Switching Safe Operating Area



Figure 6. Small-Signal Current Gain

MJE15028 MJE15030 MJE15029 MJE15031

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate IC - VCE limits of the transistor that must be observed for reliable operation, i.e., the transistor must not be subjected to greater dissipation then the curves indicate.

The data of Figures 3 and 4 is based on $T_{J(pk)} = 150$ °C; T_C is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided T_{J(pk)} < 150°C. T_{J(pk)} may be calculated from the data in Figure 2. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown.

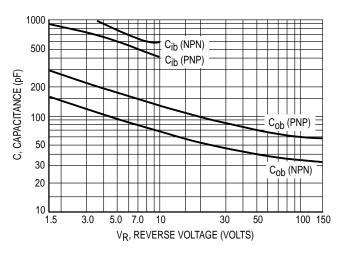


Figure 5. Capacitances

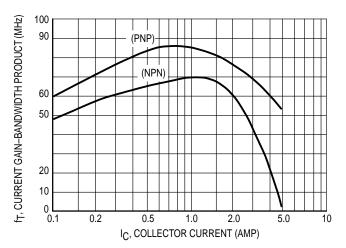
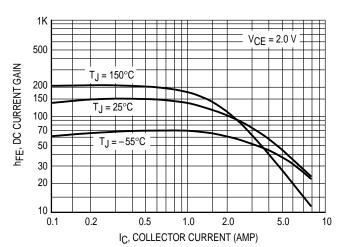



Figure 7. Current Gain-Bandwidth Product

PNP — MJE15029 MJE15031

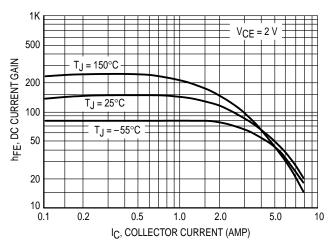
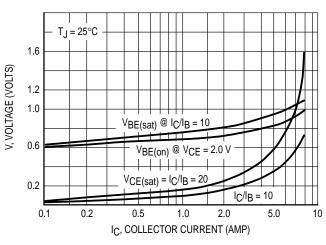



Figure 8. DC Current Gain

NPN

PNP

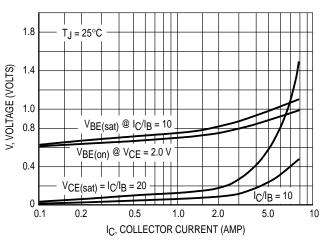


Figure 9. "On" Voltage

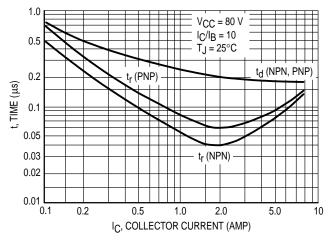


Figure 10. Turn-On Times

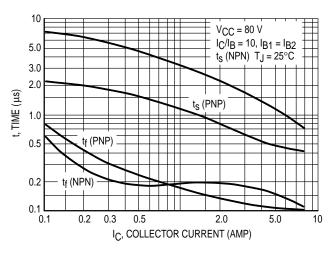
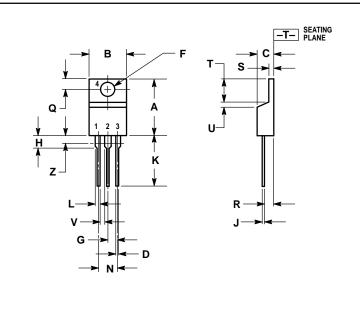



Figure 11. Turn-Off Times

PACKAGE DIMENSIONS

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.147	3.61	3.73	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.018	0.025	0.46	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
T	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

- STYLE 1:
 PIN 1. BASE
 2. COLLECTOR
 3. EMITTER
 4. COLLECTOR

CASE 221A-06 TO-220AB **ISSUE Y**

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us: USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609 INTERNET: http://Design=NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

