PACKAGE OUTLINE

SINGLE-SUPPLY LOW POWER DUAL OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2132 is a general purpose single supply low power dual operational amplifier.

The features of low operating current, wide and low operating voltage, high input inpedance, and single supply operation are suitable for battery operated items.

■ FEATURES

Operating Voltage

 $(+2.7V \sim +32V)$

Low Operating Current

(180 μ A typ. @V*=5V, each amplifier)

Slew Rate

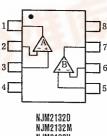
 $(2.1 \text{V}/ \mu \text{s typ.})$ (1.8MHz typ.)

Bipolar Technology

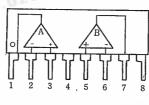
Package Outline

DIP8, DMP8, SSOP8, SIP8

NJM2132M



NJM2132V

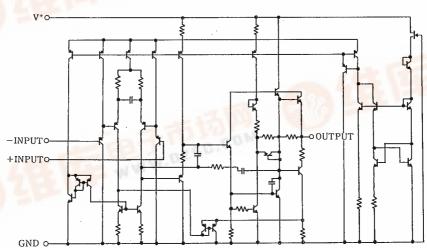

NJM2132L

PIN CONFIGURATION

Gain Bandwidth Product

NJM2132L

PIN FUNCTION 1. A OUTPUT


A -INPUT

3. A +INPUT

5. B + INPUT 6. B - INPUT

7. B OUTPUT

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	RAMETER SYMBOL RATINGS		UNIT	
Supply Voltage	V+	36	V	
Differential Input Voltage	· V _{ID} ±36		V	
Input Voltage	V _{IC}	-0.3~+36(note)	V	
Power Dissipation		(DIP-8) 500	mW	
		(DMP-8) 300		
	P _D	(SSOP-8) 250		
		(SIP-8) 800		
Operating Temperature Range	Topr	-40∼+85	C	
Storage Temperature Range	T _{stg}	−50~+125	r	

(note) When the supply voltage is less than +36V, the absolute maximum input voltage is equal to the supply voltage.

■ ELECTRICAL CHARACTERISTICS

 $(V^+/V^-=\pm 15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+ :	Single Supply	+2.7		+32	V
Input Offset Voltage	v	R _S =0Ω		2.0	4.5	mV
	V _{IO}	$V^{+}=+5V, V^{-}=0V, R_{S}=0\Omega$	_	2.5	5.0	
V _{IO} Drift	⊿ V _{io} /T	R _S =0 Ω	_	10	_	μV/°C
Input Offset Current	I _{IO}		_	5	20	nA
Input Bias Current	I _B		-	20	100	пА
Large Signal Voltage Gain	Av	$R_L \ge 10 k \Omega$, $V_0 = \pm 10 V$. 94	114	_	dB
Input Common Mode Voltage Range	V _{ICM}		-15	-15~+13.5(MIN)		V
Common mode Rejection Ratio	CMR	$R_s \leq 10k \Omega$	80	90	_	dB
Supply Voltage Rejection Ratio	SVR	R _S =100 Ω	80	100	_	dB
Maximum Output Voltage Swing	V _{OM}	$R_L=10k\Omega$	±13.6	±14.2	_	v
	+V _{OM}	V+=+5V, V==0V	3.5	4.3	_	
	-V _{OM}	$R_L=10k\Omega$	_	0.05	0.15	
Operating Current	•	R _L =∞(all Amp.)	_	440	500	μА
	I _{CC}	V+=+5V, V==0V	_	360	500	
Output Source Current	I _{source}	$V_{IN}^{+}=IV, V_{IN}^{-}=0V$	3.0	5.0	_	mA
Output Sink Current	I _{sink}	$V_{IN}^{+}=0V, V_{IN}^{-}=IV$	15	27	-	mA
Input Resistance	R _{IN}		_	300	-	МΩ
Input Capacitance	Ci			0.8	-	pF
Close Loop Output Impedance	Zo	f=1.0MHz	_	100	_	Ω
Equivalent Input Noise Voltage	en	$R_S=100\Omega$, $f=1kHz$	-	32		nV/√Hz
Slew Rate	SR	$R_L=10k\Omega$	-	2.1	-	V/ μs
Gain Bandwidth Product	GB	f=100kHz	-	1.8	-	MHz
Power Bandwidth	DW	$A_{V}=+1.0, R_{L}=10k\Omega$	_	25	_	kHz
	BWp	V ₀ =20V _{p-p} , THD=5%	_	35	_	
Phase Margin		R _L =10kΩ	-	60	-	deg.
	. фм	$R_L=10k\Omega$, $C_L=100_pF$	_	45	_	
Amplitude Margin		$R_L=10k\Omega$	-	15	-	, dB
	Am	$R_{L}=10k\Omega$, $C_{L}=100_{p}F$	-	5.0	-	
Total Harmonic Distortin	THE	$A_{V}=+10, R_{L}=10k\Omega$		0.03	-	%
	THD	$f=10kHz$, $2 \le V_0 \le 20V_{p-p}$	-			
Channel Separation	CS	f=10kHz, Input Referrd	_	³ 120	_	dB

NJM2132

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.