₩₩₩₩₩₩₩ 捷多邦,专业PCB打样工厂,24小时和 急出妈**JM5534** 

# HIGH PERFORMANCE LOW-NOISE OPERATIONAL AMPLIFIER

## GENERAL DESCRIPTION

JRC

查询NJM5534供应商

The NJM5534 is a high performance low noise operational amplifier. This amplifier features popular pin-out, superior noise performance, and high output drive capability.

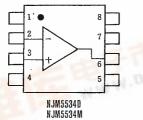
The amplifier also features guaranteed noise performance with substantially higher gain-bandwidth product, power bandwidth, and selw rate which far exceeds that of the NJM741 type amplifiers. The NJM5534 is internally compensated for a gain of three or higher and may be externally compensated for optimizing specific performance requirements of various applications such as unity-gain voltage followers, drivers for capacitive loads or fast setting.

The specially designed low noise input transistors allow the NJM5534 to be used in very low noise signal processing applications such as audio pre-amplifiers and servo error amplifiers.

 $(\pm 3V \sim \pm 22V)$ 

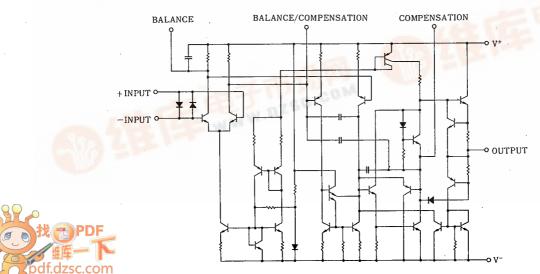
(200kHz typ.)

(13V/ µs typ.)


DIP8, DMP8

(3.3nV/VHz typ. @1kHz)

#### FEATURES


- Operating Voltage
- Single Circuit
- With Vio Trim Terminal
- Low Input Noise Voltage
- Power Bandwidth
- Slew Rate
- Package Outline
- Bipolar Technology

#### PIN CONFIGURATION



PIN FUNCTION 1. BALANCE 2. -INPUT 3. +INPUT 4. V<sup>-</sup> 5. COMPENSATION 6. OUTPUT 7. V<sup>+</sup> 8. BALANCE/COMPENSATION

# EQUIVALENT CIRCUIT





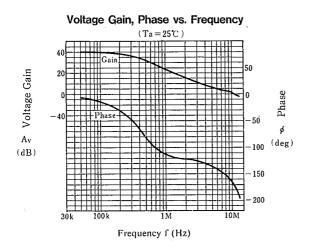


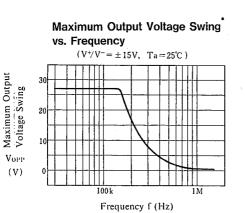




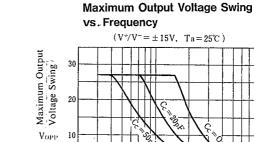
### ABSOLUTE MAXIMUM RATINGS

| T'  | ٠ | =2 | 5 | Ŷ | ٠,  |
|-----|---|----|---|---|-----|
| . 1 | a | =2 | J | ÷ | × 1 |


| PARAMETER                   | SYMBOL                            | RATINGS    | UNIT |  |
|-----------------------------|-----------------------------------|------------|------|--|
| Supply Voltage              | (V <sup>+</sup> /V <sup>-</sup> ) | ±22        | v    |  |
| Differential Input Voltage  | VID                               | ±0.5       | v    |  |
| Input Voltage               | Vic                               | V*/V       | V    |  |
|                             | PD                                | (DIP8) 500 | mW   |  |
| Power Dissipation           |                                   | (DMP8) 300 | mW   |  |
| Operating Temperature Range | Topr                              | -20~+75    | C    |  |
| Storage Temperature Range   | Tstg                              | -40~+125   | Ċ    |  |


# ELECTRICAL CHARACTERISTICS

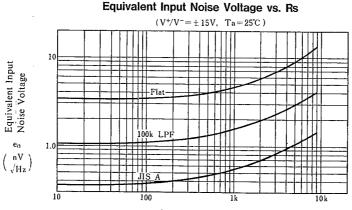
| ■ ELECTRICAL CHARACTERISTICS (Ta=25°C, V*/V <sup>-</sup> =±15 |                  |                                                   |      |         |       |                |
|---------------------------------------------------------------|------------------|---------------------------------------------------|------|---------|-------|----------------|
|                                                               | 20000            | TEST CONDITION                                    |      | NJM5534 |       |                |
| PARAMETER                                                     | SYMBOL           |                                                   |      | TYP.    | MAX.  | UNIT           |
| Input Offset Voltage                                          | Vio              | $R_{s} \leq 10 k\Omega$ .                         |      | 0.5     | 4     | mV             |
| Input Offset Current                                          | IIO              |                                                   | —    | 20      | 300   | nA             |
| Input Bias Current                                            | IB               |                                                   |      | 500     | 1,500 | nA             |
| Input Resistance                                              | R <sub>IN</sub>  |                                                   | 30   | 100     | i     | kΩ             |
| Large Signal Voltage Gain                                     | Av               | $R_{L} \ge 2k\Omega, V_{0} = \pm 10V$             | 88 ' | 100 :   |       | dB             |
| Maximum Output Voltage Swing                                  | V <sub>OM</sub>  | $R_1 \ge 600\Omega$                               | ±12  | ±13     |       | v              |
| Input Common Mode Voltage Range                               | V <sub>ICM</sub> |                                                   | ±12  | ±13     | -     | v              |
| Common Mode Rejection Ratio                                   | CMR              | R <sub>s</sub> ≦10kΩ                              | 70   | 100     | _     | dB             |
| Supply Voltage Rejection Ratio                                | SVR              | R <sub>s</sub> ≤10kΩ                              | 80   | 100     |       | dB ·           |
| Operating Current                                             | Icc              | $R_{L} = \infty$                                  |      | 4       | 8     | mA             |
| Transient Response Rise Time                                  | t <sub>R</sub>   | $V_{1N}=50mV, R_L=600\Omega, C_L=100pF, C_c=22pF$ | _    | 35      | _     | nsec           |
| Overshoot                                                     |                  | $V_{IN}=50mV, R_L=600\Omega, C_L=100pF, C_c=22pF$ |      | 17      |       | %              |
| Slew Rate                                                     | SR               | C <sub>c</sub> =0                                 | _    | 13      | _     | V/μS           |
| Gain Bandwidth Product                                        | GB               | $C_c = 22pF, C_L = 100pF$                         |      | 10      | _     | MHz            |
| Power Bandwidth                                               | WPG              | $V_0=20V_{p,p}, C_c=0$                            | _    | 200     | _     | kHz            |
| Equivalent Input Noise Voltage                                | V <sub>NI</sub>  | f=20Hz~20kHz                                      |      | 1.0     |       | μVrms          |
| Equivalent Input Noise Current                                | I <sub>NI</sub>  | f=20Hz~20kHz                                      | _    | 25      | _     | pArms          |
| Equivalent Input Noise Voltage 1                              | e <sub>n</sub> 1 | f <sub>o</sub> =30Hz                              |      | 5.5     | _     | nV/√Hz         |
| Equivalent Input Noise Voltage 2                              | en 2             | $f_0 = 1 \text{ kHz}$                             | -    | 3.3     |       | $nV/\sqrt{Hz}$ |
| Equivalent Input Noise Current 1                              | in 1             | $f_0 = 30$ Hz                                     | _    | 1.5     |       | PA/√Hz         |
| Equivalent Input Noise Current 2                              | in 2             | $f_0 = 1 \text{ k Hz}$                            |      | 0.4     |       | pA/√Hz         |
| Broadband Noise Figure                                        | NF               | $f=10Hz\sim20kHz, R_s=5k\Omega$                   | -    | 0.9     | -     | dB             |


Note: JRC's general selected products D rank are also prepared for the noise standard ( $R_s$ =2.2k $\Omega$ , R1AA,  $V_N$ =1.4 $\mu$ V Max.)

### TYPICAL CHARACTERISTICS






Maximum Output Voltage Swing vs. Load Resistance (Ta=25°C) тπ + 2  $+ V_{OM}$ (V) -<del>|-</del> 1 Maximum Output Voltage Swing Vox - Vом (V) 111 - 24 100 10k Load Resistance  $R_L$  ( $\Omega$ )



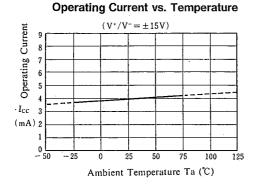
Frequency f (Hz)

1 M

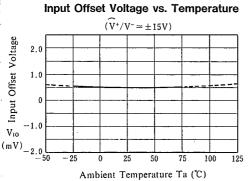
100k



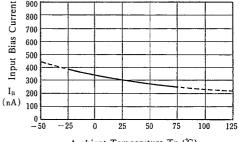
# Source Resistance $R_S$ ( $\Omega$ )

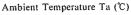

 $(\mathbf{V})$ 

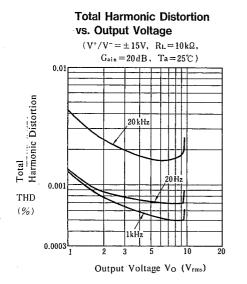
۵

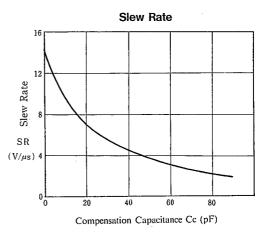

4

# NJM5534

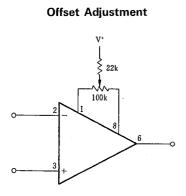

#### **TYPICAL CHARACTERISTICS**



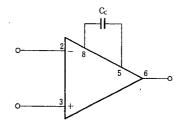


Maximum Output Voltage Swing vs. Temperature  $(V^+/V^- = \pm 15V, R_L = 600\Omega)$ ÷Vом 15 (V) Maximum Output Voltage Swing 14 13 -12 13 — V<sub>ом</sub> - 14 50 (V) - 25 0 25 50 75 100 125 Ambient Temperature Ta (℃)




The Input Bias Current vs. Temperature  $(V^+/V^- = \pm 15V)$ 

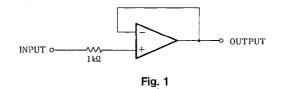







## ADJUSTMENT METHOD




**Frequency Compensation** 



#### NOTICE

When used in voltage follower circuit, put a current limit resistor into non-inverting input terminal in order to avoid inside input diode destruction when the power supply is turned on. (ref. Fig. 1)



MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -