SINGLE GENERAL PURPOSE OPERATIONAL AMPLIFIER

GENERAL DESCRIPTION

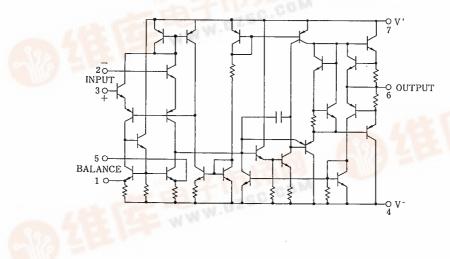
查询NJM741V供应商

The NJM741 is a high performance Monolithic Operational Amplifier constructed using the New JRC Planar epitaxial process. It is intended for a wide range of analog applications. High common mode voltage range and absence of latch-up tendencies make the NJM741 ideal for use as a voltage follower. The high gain and wide range of operating voltage provides superior performance in integrator, summing amplifier, and general feedback applications.

NJM741D

NJM741M NJM741V

- FEATURES
- Operating Voltage
- Single Supply
- With V10 Trim Terminal
- Package Outline
- Bipolar Technology
- PIN CONFIGURATION


PIN FUNCITON 1. V_{os} Trim 2. – Input 3. + Input 4. V⁻ 5. V_{os} Trim. 6. Output

7. V⁺
8. NC

 $(+3V \sim +18V)$

DIP8, DMP8, (SSOP8)

EQUIVALENT CIRCUIT

捷多邦,专业PCB打样工厂,24小时加

NJM741D

急出倒JM741

NJM741M

Δ

.

ABSOLUTE MAXIMUM RATINGS

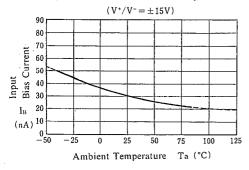
(T	`a=	-2.	5 (D)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±18	v
Input Voltage	Vic	±15 (note)	v
Differential Input Voltage	Vid	±30	v
Power Dissipation	Рр	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 300	mW
Operating Temperature Range	Topr	-40~+85	Ϋ́
Storage Temperature Range	Tstg	-40~+125	°C

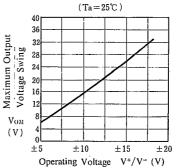
(note) For supply voltage less than \pm 15V, the adsolute maximum input voltage is equal to the supply voltage.

ELECTRICAL CHARACTERISTICS

: $(Ta = 25^{\circ}C, V^{+}/V^{-} = \pm 15V)$

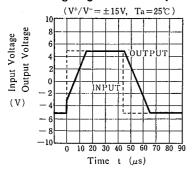

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio	$R_{S} \leq 10 k\Omega$		2.0	6.0	mV
Input Offset Current	I _{IO}		_	. 5	200	nA
Input Bias Current	I _{IB}		_	30	500	nA
Input Resistance	RIN		0.3	2.0	_	MΩ
Large-signal Voltage Gain	Av	$R_{L} \ge 2k\Omega, V_{0} = \pm 10V$	86	110	_	dB
Maximum Output Voltage Swing 1	V _{OM1}	$R_{L} \ge 10 k\Omega$	±12	±14	_	v
Maximum Output Voltage Swing 2	V _{OM2}	R _L ≧2kΩ	±10	±13	l	v
Input Common Mode Voltage Range	VICM		±12	±13		v
Common Mode Rejection Ratio	CMR	R _s ≦10kΩ	70	100	_	dB
Supply Voltage Rejection Ratio	SVR	R _s ≦10kΩ	76.5	100	_	dB
Operating Current	Icc		_	1.7	2.8	mA
Slew Rate	SR	R _L ≥2kΩ		0.5	<u> </u>	V/µs
Transient Response (Unity Gain) (Rise Time)	tr	$V_{1N} = 20 \text{mV}, R_L = 2k\Omega, C_L = 100 \text{pF}$		0.3		μs.
Transient Response (Unity Gain) (Overshoot)	to	$V_{1N} = 20 \text{mV}, R_1 = 2 k \Omega, C_1 = 100 \text{pF}$		5.0	_	%

TYPICAL CHARACTERISTICS

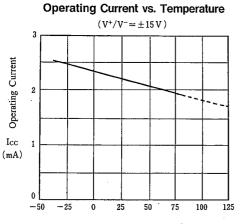


Maximum Output Voltage Swing vs. Load Resistance $(V^+/V^- = \pm 15V, Ta = 25°C)$ ind building and building an

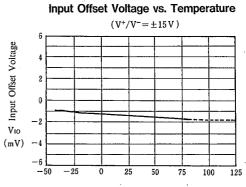
Input Bias Current vs. Temperature



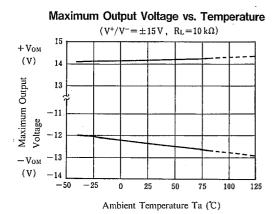
Maximum Output Voltage Swing vs. Operating Voltage

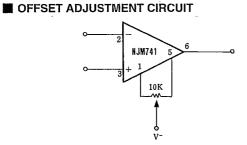

Voltage Gain, Phase vs. Frequency $(V^+/V^-\!=\!\pm15V,\,R_L\!=\!2k\Omega$, 40dB Amp. Ta=25°C) 50 0 Voltage Gain Phase ∉ (deg) 40 60 đ 30 120 20 A٧ -180 Αv 10 (dB)0 1 k 10k 1 M 100k Frequency f (Hz)

Voltage-follower Large-signal Pulse Response



NJM741


TYPICAL CHARACTERISTICS



Ambient Temperature Ta (°C)

Ambient Temperature Ta (°C)

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -