

JTDB 25

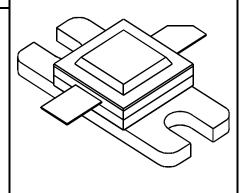
25 Watts, 36 Volts, Pulsed Avionics 960 - 1215 MHz

GENERAL DESCRIPTION

The JTDB 25 is a high power COMMON BASE bipolar transistor. It is designed for pulsed systems in the frequency band 960-1215 MHz. The device has gold thin-film metallization and diffused ballasting for proven highest MTTF. The transistor includes input and output prematch for broadband capability. Low thermal resistance package reduces junction temperature, extends life.

ABSOLUTE MAXIMUM RATINGS

Maximum Power Dissipation @ 25°C² 97 Watts


Maximum Voltage and Current

BVcesCollector to Base Voltage55 VoltsBVeboEmitter to Base Voltage3.5 VoltsIcCollector Current5.0 Amps

Maximum Temperatures

Storage Temperature $-65 \text{ to} + 200^{\circ}\text{C}$ Operating Junction Temperature $+200^{\circ}\text{C}$

CASE OUTLINE 55AW, STYLE 1

ELECTRICAL CHARACTERISTICS @ 25 °C

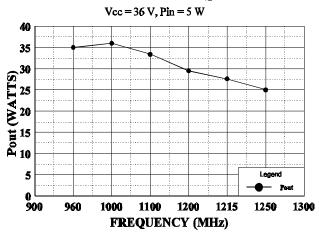
SYMBOL	CHARACTERISTICS	TEST CONDITIONS	MIN	TYP	MAX	UNITS
$\begin{array}{c} \textbf{Pout} \\ \textbf{Pin} \\ \textbf{Pg} \\ \eta_c \\ \textbf{VSWR} \end{array}$	Power Out Power Input Power Gain Collector Efficiency Load Mismatch Tolerance	$F = 960-1215 \text{ MHz}$ $Vcc = 36 \text{ Volts}$ $PW = 10 \mu\text{sec}$ $DF = 40\%$ $F = 1090 \text{ MHz}$	25 7.0	7.5 40	5.0 5:1	Watts Watts dB %

BVebo	Emitter to Base Breakdown	Ie = 5 mA	3.5		Volts
BVces	Collector to Emitter Breakdown	Ic = 10 mA	55		Volts
$\mathbf{h}_{\mathbf{FE}}$	DC - Current Gain	Ic = 500 mA, Vce = 5 V	10		
$\Theta \mathbf{j} \mathbf{c}^2$	Thermal Resistance			1.8	°C/W

Note 1: At rated output power and pulse conditions

2: At rated pulse conditions

Issue A, July 1997


GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.

GHz Technology Inc. 3000 Oakmead Village Drive, Santa Clara, CA 95051-0808 Tel. 408 / 986-8031 Fax 408 / 986-8120

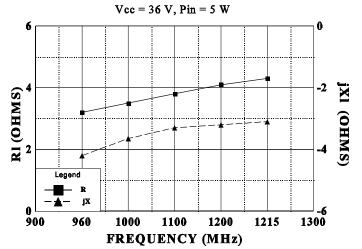
All Data shown is for operation under the rated pulse conditions.

POWER OUTPUT vs FREQUENCY

SERIES INPUT IMPEDANCE vs FREQUENCY Vcc = 36 V, Pin = 5 W

8 + 1X (OHMS)

1100


FREQUENCY (MHz)

1200

1215

1300

SERIES LOAD IMPEDANCE vs FREQUENCY

July 1997

2

900

јх 960

1000

10

GHz TECHNOLOGY INC. RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE. GHz RECOMMENDS THAT BEFORE THE PRODUCT(S) DESCRIBED HEREIN ARE WRITTEN INTO SPECIFICATIONS, OR USED IN CRITICAL APPLICATIONS, THAT THE PERFORMANCE CHARACTERISTICS BE VERIFIED BY CONTACTING THE FACTORY.