DUPLEX LCD DRIVER

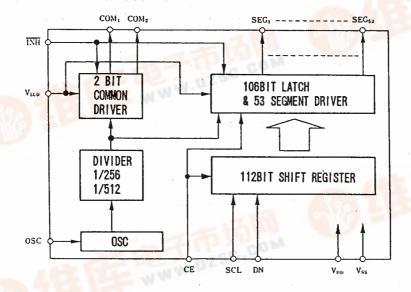

■ GENERAL DESCRIPTION

The NJU6432B is a duplex LCD driver to drive segment type LCD panel.

2-common and 53-segment drivers can drive up to 104 segments.

The NJU6432B is useful for the Digital Tuning System or others segment type display driver.

PACKAGE OUTLINE

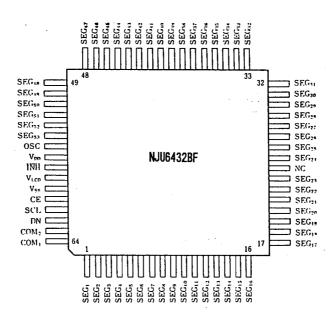


FEATURES

- 53 Segment Drivers
- Duty Ratio 1/2 :104-Segment Drive
- Serial Data Transmission (Shift Clock 2MHz max.)
- Display Off Function (INH Terminal)
- Operating Voltage --- 6.5V Max.
- Package Outline QFP 64
- C-MOS Technology

BLOCK DIAGRAM

NJU6432BF



PIN CONFIGURATION

TERMINAL DESCRIPTION

NO.	SYMBOL	FUNCTION							
1~23 25~53	SEG ₁ ~ SEG ₂₃ SEG ₂₄ ~ SEG ₄₃	Segment Output Terminal							
54	SEG ₅₃	Normally On Segment Output Terminal(When the "L" level input to the INH terminal, this segment also turns off.)							
55	OSC	Oscillating Terminal							
56,59	V _{DD} , V _{SS}	Power Supply							
57	TNH	Display-Off Control Terminal: When "L" level input to this terminal, all of the display turns off including SEGss.							
58	VLCD	Power Supply for LCD Driving							
60	CE	Chip Enable Terminal							
61	SCL	Serial Data Transmission Clock Terminal							
62	DN	Serial Data Input Terminal							
63 64	COM ₂ COM ₁	Common Output Terminal.							
24	NC	Non Connection							

5

FUNCTIONAL DESCRIPTION

(1) Operation of each block

(1-1)Oscillation Circuits

Oscillation by connecting external resistor and capacitor.

This circuits supply the basical clock signal to other circuits like as common driver and segment driver.

(1-2)Driving Circuits

This circuit divide the oscillating frequency by 1/256 and 1/512, and generate the common and segment output timing signals.

(1-3)Shift-Register

During the CE signal is "H", the data input to this shift-register by synchronizing the shift clock.

(1-4)Latch and Segment Driver

During the CE signal is "L", the data in the shift-register transfer to the latch and the segment driver output the LCD driving waveform according to the latched data.

(2) Data Input Format (The Data Correspond to the Output)

(2-1)Data Input Format

Transmission Direction

LSB							•							MSB
D_1	D ₂	Dз	D₄		052	D ₅₃	χ	χ	0	D ₅₄	D ₅₅	D ₁₀₁ D ₁₀₂ D ₁₀₃ D ₁₀₄ D ₁₀₅ D ₁₀₆ X	: X	1
L				D53, D100	are	don	't c	are					(112	bit)

(2-2) Input Data Correspond to Segment Status

Data Dxxx	Segment Status				
"H"	ON				
"L"	OFF				

(2-3) Input Data Correspond to Segment Terminals

nput vata correspo	iu to degilerit	TOTIMITIATO	
Segment	Data	COM ₁	COM ₂
000	D ₁	0	
SEG ₁	D_2		0
000	Dз	0	
SEG₂	D4		0
oro	D ₅	0	
SEG₃	- D ₆		0
		1 1	
oro	D _{5 1}	0	
SEG ₂₆	D ₅₂		0
000	D _{5 4}	0	
SEG ₂₇	D55		0
, .		i	
oro	D ₉₈	0	
SEG ₄₉	D _{9 9}		0
050	D ₁₀₀	0	
SEG ₅₀	D ₁₀₁		0
050	D ₁₀₂	0	
SEG ₅₁	D ₁₀₃		0
050	D ₁₀₄	0	
SEG ₅₂	D ₁₀₅		0
050	ON	0	
SEG ₅₃	ON		0

MA ABSOLUTE MAXIMUM RATINGS

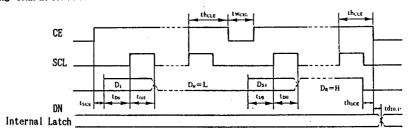
PARAMETER	SYMBOL	RATINGS	UNIT
Operating Voltage	V _{DD}	- 0.3 ~ + 7.0	V
Operating Voltage	VLCD	$-0.3 \sim V_{DD} + 0.3$	V
Input Voltage (1)	Vin	- 0.3 ~ + 7.0	٧
Input Voltage (2)	VIN	- 0.3 ~ V _{DD} +0.3	٧
Output Voltage (2)	Vo	- 0.3 ~ V _{DD} +0.3	٧
Output Current (3)	lo	100	μA
Output Current (4)	lo	1.0	mΑ
Power Dissipation	PD	300	mW
Operating Temperature	Topr	- 30 ~ + 85	C
Storage Temperature	Tstg	- 40 ~ + 125	${\mathfrak C}$

- * 1) CE, SCL, DN Terminals
- * 2) OSC Terminal during OFF-output
- * 3) SEG₁~SEG₅₃ Terminals
- * 4) COM1,COM2 Terminals

ELECTRICAL CHARACTERISTICS DC Characteristics

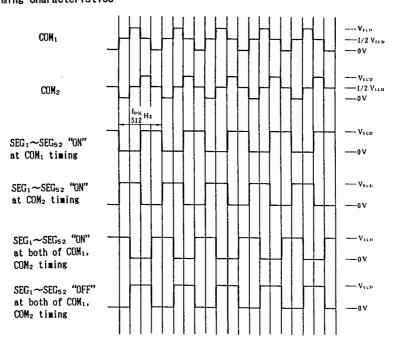
 $(Ta=-30\sim+85^{\circ}C.\ V_{DD}=6.5V,\ V_{SS}=0V)$

DO GHAF ACTOR ISTICS			(1a- 00-		100-0.011	100 017
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	VDD	V _{DD} Terminal	2.5		6.5	V
Supply Voltage	VLCD	V _{LCD} Terminal	2.5		VDD	٧
Operating Current	lpp	V _{DD} Terminal			- 1	mA.
Operating Current	LCD	V _{LCD} Terminal			2	mA
"H" Input Voltage	VIH	TNH Terminal	0.7V _{DD}		6.5	V
"L" Input Voltage	VIL	TNH Terminal	0		0.3V _{DD}	V
"H" Input Voltage	VIH	CE,SCL,DN Terminals	0.8V _{DD}		6.5	V
"L" Input Voltage	VIL	CE,SCL,DN Terminals	0		0.2V _{DD}	٧
Oscillator Resistor	Rosc	OSC Terminal		51		kΩ
Oscillator Capacitor	Cosc	OSC Terminal		680		pF
Oscillator Frequency	fosc	OSC Terminal	25	50	100	kHz
"H" Input Current	Ітн	V _{IN} =6.5V, CE, SCL,DN,TNH Terminals			5	μA
"L" Input Current	liL	V _{IN} =0V, <u>CE</u> , SCL,DN,INH Terminals			5	μA
"H" Output Voltage	Vон	lo=-10µA SEG₁∼SEG₅₃ Terminals	V _{LCD} -1.0			Ÿ
"L" Output Voltage	Vol	l _o =10μA SEG ₁ ~SEG ₅₃ Terminals			1.0	٧
"H" Output Voltage	V _{он}	l _o =-100μA COM ₁ ,COM ₂ Terminals	VLCD-0.6			٧
"L" Output Voltage	Vol	lo=100 µA COM1,COM2 Terminals			0.6	٧
Middle Level Valace	v	lo=±100μA, VLCD=6.5V	2.65	3.25	3.85	v
Middle Level Voltage	VMID	Io=±100 μA, VLCD=3.0V	0.9	1.5	2.1	¥
Hysteresis Voltage	V _H	VDD=5V, CE,SCL,DN Terminals	0.3			٧

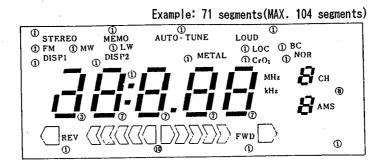


AC Characteristics

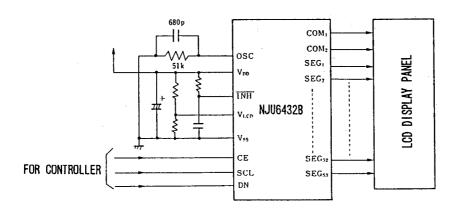
(Ta=-30~+85°C, V_{DD}=6.5V, V_{SS}=0V)


PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
"L" Clock Pulse Width	twcll	SCL Terminal	0.25			μs
"H" Clock Pulse Width	tw clh	SCL Terminal	0.25			μs
Data Set-up Time	tos	SCL, DN Terminals	0.25			μs
Data Hold Time	tон	SCL, DN Terminals	0.25			μs
CE Set-up Time	tsce	CE, DN Terminals	1			μs
CE Hold Time (1)	thoce	CE, DN Terminals	1			μs
CE Hold Time (2)	thoLE	CE, SCL Terminals	1.25			μs
Data Latch Delay Time	tdDLP				1	μs
"L" Clock Enable Pulse Width	twceL	CE Terminal	4			μs

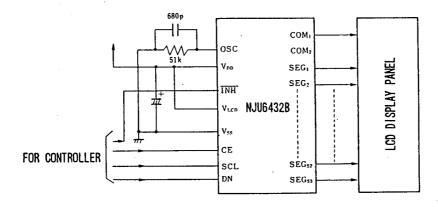
· Input Timing Characteristics


The data is latched at $D_{\text{\tiny R}}\text{=H}$ and falling edge of the CE signal condition.

· Output Timing Characteristics



DISPLAY EXAMPLE



APPLICATION CIRCUITS

1 In case of VLCD (VDD

2 In case of VLCD=VDD

(Note) After rising edge of V_{DD} voltage, the display data is not guaranteed and which blinking is meaningless display. Therefore, keep TNH terminal to Low Level by the display data transferred is needed.

NJU6432B

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.