WWW.DZSC.CON 捷多邦,专业PCB打样工厂,24小时加 NJU6^{急4}52A

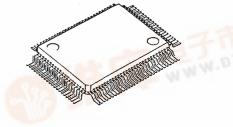
PACKAGE OUTLINE

BIT MAP LCD DRIVER

GENERAL DESCRIPTION

JRC 道彻NJU6452A供应商

The NJU6452A is a bit map LCD driver to display graphics or characters.


It contains 2,560 bit display data RAM, microprocessor interface circuits, instruction decoder, and 16-common and 61-segment drivers.

The bit image display data sent from 8- or 16-bit MPU are stored in the display data RAM and drives Dot Matrix LCD Panel by the common and segment drivers.

The 16-common and 61-segment drivers can drive graphics or 12-character 2-line with icon data.

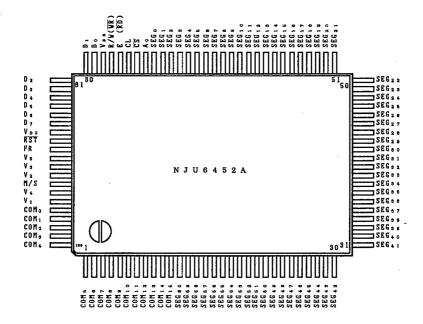
The NJU6452A can combine with the NJU6452A or 6453A to expand the display capacity to 32 x 122 dots or 16 x 141 dots of graphics or character display by using the extension function of NJU6452A.

Furthermore, low current consumption due to the external clock input and wide operating voltage are useful apply to the small sized battery operated items.

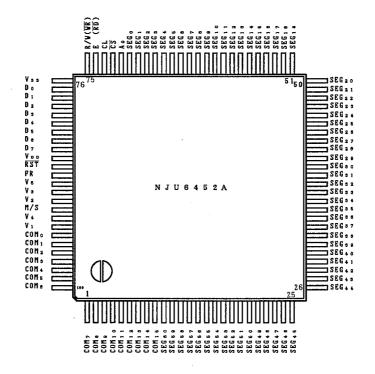
NJU6452AF

FEATURES

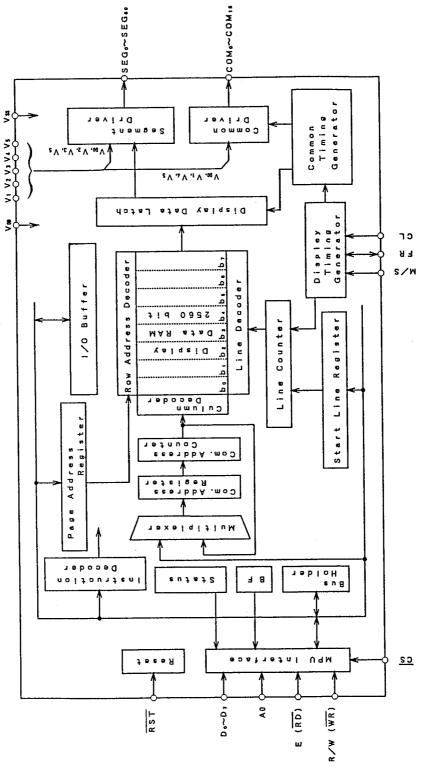
Direct Correspondence between Display Data RAM and


LCD Pixel

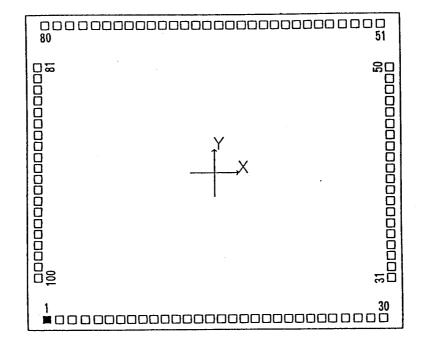
- Display Data RAM 2,560 bits 80 x 8 x 4
- Direct Interface with 8- or 16-bit MPU (Both of 68 and 80 type MPU can connect directly)
- Extension Function (can combine with NJU6452A or 6453A)
- Read Out From the Display Data RAM
- 16-common and 61-segment Drivers
- Programmable Duty Ratio ; 1/16 or 1/32 Duty
- Useful Instruction Set Display Data Read/Write, Display ON/OFF Cont, Display Data RAM Address Set, Status Read, Display Starting Line Set, Static Drive ON/OFF, Duty Ratio Setting, and Read Modify Write,
- Low Power Consumption
- External Clock Input (2kHz)
- Operating Voltage ---- 2.4V~6.0V
- LCD Driving Voltage --- 3.0V~13.5V WW.DZSC.COM
- Package Outline --- QFP 100 / Chip
- C-MOS Technology



■ PIN CONFIGURATION (NJU6452AFC1)


■ PIN CONFIGURATION (NJU6452AFG1)

Note) Pin configuration of "FG1" package is different from "FC1" package.



BLOCK DIAGRAM

PAD LOCATION

Chip CenterX=Oum, Y=OumChip Size4860um x 4160umChip Thickness400um ± 30umPad Size92um x 92um

PAD COORDINATES

Chip Size 4860um x 4160um(Chip Center X=0um, Y=0um)

No.	Terminal Name	X=(um)	Y=(um)
1	COM₅	-2130	-1865
2	COM	-1970	-1865
3	COM7	-1810	-1865
4	COMB	-1650	-1865
5	COM®	-1490	-1865
6	COM10	-1330	-1865
7	COM11	-1190	-1865
8	COM12	-1050	-1865
9	COM ₁₃	- 910	-1865
10	COM14	- 770	-1865
11	COM15	- 630	-1865
12	S E G 60	- 490	-1865
13	SEG 59	- 350	-1865
14	SEG 58	- 210	-1865
15	SEG 57	- 70	-1865
16	SEG 56	70	-1865
17	SEG55	210	-1865
18	S E G 54	350	-1865
19	SEG 53	490	-1865
20	SEG 52	630	-1865
21	SEG 51	770	-1865
22	SEG 50	910	-1865
23	SEG ₄₉	1050	-1865
24	SEG 48	1190	-1865
25	SEG 47	1330	-1865
26	SEG ₄₆	1490	-1865
27	SEG 45	1650	-1865
28	SEG 44	1810	-1865
29	SEG ₄₃	1970	-1865
30	SEG 4 2	- 2130	-1865
31	SEG ₄₁	2213	-1354
32	SEG40	2213	-1214
33	S E G 3 9	2213	-1074
34	SEG 38	2213	- 934
35	SEG 37	2213	- 794
36	S E G 36	2213	- 654
37	S E G 3 5	2213	- 514
38	SEG 34	2213	- 374
39	SEG ₃₃	2213	- 234
40	SEG 3 2	2213	- 94
41	SEG 3 1	2213	46
42	SEG 30	2213	186
43	S E G 29	2213	326
44	S E G 28	2213	466
45	S E G 27	2213	606
46	SEG 26	2213	746
47	SEG 25	2213	886
48	S E G 24	2213	1026
49	S E G 23	2213	1166
50	S E G 2 2	2213	1306
* Pad Si			

No.	Terminal Name	X=(um)	Y=(um)
51	S E G 2 1	2130	1865
52	SEG 20	1970	1865
53	S E G 19	1810	1865
54	S E G 18	1650	1865
55	S E G 17	1490	1865
56	SEG16	1330	1865
57	S E G 1 5	1190	1865
58	S E G 1 4	1050	1865
59	SEG 13	910	1865
60	S E G 1 2	770	1865
61	SEGII	630	1865
62	SEG ₁₀	490	1865
63	SEG,	350	1865
		210	1865
64	SEG:	70	1865
65	SEG7		
66	SEG.	- 70	1865
67	SEG₅	- 210	1865
68	SEG₄	- 350	1865
69	SEG 3	- 490	1865
70 ·	SEG₂	- 630	1865
71	SEG1	- 770	1865
72	SEGo	- 910	1865
73	Ao	-1050	1865
74	OSC1	-1190	1865
75	OSC2	-1330	1865
76	- E	-1490	1865
77	R/W	-1650	1865
78	Vss	-1810	1865
79	DB ₀	-1970	1865
80	D B 1	-2130	1865
81	D B 2	-2213	1330
82	D B 3	-2213	1190
83	D B 4	-2213	1050
84	DB4	-2213	910
		-2213	770
85		-2213	630
86	<u> </u>	-2213	490
87			350
88	RST	-2213	
89	FR	-2213	210
90	<u>V 5</u>	-2213	70
91	V 3	-2213	- 70
92	V 2	-2213	- 210
93	M/S	-2213	- 350
94	V 4	-2213	- 490
95	V 1	-2213	- 630
96	COMo	-2213	- 770
97	COM	-2213	- 910
98	COM ₂	-2213	-1050
99	COM3	-2213	-1190
100	COM4	-2213	-1330

N J U 6 4 5 2 A

Terminal Description

		on	
No		Symbol	Function
FG1	FC1		
85	87		Power Supply : V _{DD} =+5V
76	78	Vss	GND : V _{ss} = OV
88, 89 90, 92, 93	90, 91 92, 94, 95	V_5, V_4 V_3, V_2, V_1	LCD Driving Voltage Supplying Terminal. Following relation must be maintained. $V_{DD} \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$
72	74	CS	Chip Select Signal Input Terminal. Normally input the decoded signal of Address Bus Signal. Active "L".
73	75	CL	Display Data Latch Signal Input Terminal. The Line Counter also count up by this signal rising timing. The synchronized signal of the NJU6450A is required.
74	76	E	<pre></pre>
		(RD)	Connect to Enable Clock Input Terminal of 68 type MPU. Active "H". <when 80="" connect_to="" mpu="" the="" type=""> Connect to RD Signal Input Terminal of 80 type MPU. Active "L" During this terminal is "L", the Data Bus is output state.</when>
75	77	R/W	<pre>{When connect to the 68 type MPU> Connect to READ/WRITE Control Signal Input Terminal of 68 type MPU. R/W H L Status Read Write</pre>
		(WR)	<when 80="" connect="" mpu="" the="" to="" type=""> Connect to WR Signal connecting terminal of 80 type MPU. Active "L". The data on the Data Bus is fetch at the rising edge of this signal.</when>
71	73	AO	Connect to the Address Bus of MPU. The data on the D ₀ ~D ₇ is distin- guished between Display Data and Instruction by this signal. AO H L Data Display Data Instruction
77~84	79~86	D o~ D 7	Tri-state bilateral Data Bus. The data transmission between 8- or 16-bit MPU and NJU6452A is executed by this Bus.
87	89	FR	Alternating signal for LCD Driving output or input terminal.
			Output or input is determined by master or slave mode which selected by M/S terminal. M/S Master Slave FR Output Input
94~100	96~100	COM₀ ~COM₁₅	Common output terminal. One output level out of V_{DD} , V_1 , V_4 , V_5 is selected by combination of FR and data of common counter.
1~9	1~11	(COM₃ 1	FR H L
		~COM16)	Data H L H L
		(Note)	Output V_5 V_1 V_{DD} V_4
70~10	72~12	SEG₀ ∼SEG₅₀	Segment output terminal. One output level out of V _{DD} , V ₂ , V ₃ , V ₅ is selected by combination of FR and data of Display RAM. FR H Data H L
			Output V_{DD} V_2 V_5 V_3
86	88	RST	Reset and Interface type select terminal. The reset operation is performed by rise or fall edge of this signal. The input level after initialization selects the interface type of 68 or 80 type of MPU. MPU Edge Input Level after initialization selects the interface type of 68 or 80 type of MPU. MPU Edge Input Level after initialization 68 Type Rise 80 Type Fall
91	93	M/S (Note)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

. .

JRC

Functional Description

- (1) Description for each blocks
 - (1-1) Busy Flag (BF)

When the internal circuits are in the operation mode, the busy flag(BF) is "1", and any instruction except the status read are inhibited.

The busy flag is output at D_7 terminal when status read instruction is executed.

If enough cycle time over than t_{cvc} is kept, no need to check the busy flag.

(1-2) Display Start Line Register

The Display Start Line Register is a pointer register which indicate the address in the Display Data RAM corresponded with COM_0 (normally it display the top line in the LCD Panel). This register can use for scroll the screen, change the display page and so on.

The Display Start Line instruction set the display start address of the Display Data RAM represented in 5-bit to this register.

(1-3) Line Counter

The Display Start Address stored in the Display Start Line Register is set to the Line Counter when the FR signal out from the NJU6452A is chenging.

The Line Counter count up by synchronizing common signal out from NJU6452A and generate the line address which addressing the read out line of Display Data RAM.

(1-4) Column Address Counter

The column address counter is 7-bit presettable counter which addressing the column address as shown as Fig. 1.

This counter increments "1" up to 50H when the Display Data Read/Write instruction is executed. The count up is stop at 50H (over 50H is non existing address) automatically by the count lock function.

Furthermore, this counter is independent with the Page Register.

(1-5) Page Register

This register gives page address of Display Data RAM as shown Fig. 1. When the MPU access the data by changing the page, the page address set instruction is required.

(1-6) Display Data RAM

Display Data Ram consist of 2,560 bits stores the bit image display data (each bit correspond to the each pixel so called bit map method). This RAM and MPU are operating independently, therefore, there is

no influence by the unsynchronize rewriting.

The each bit in the Display Data RAM correspond to the each dot of the LCD panel.

0 n = "1"

Off = "0"

The relation between column address and segment output can inverse by the Address Inverse Instruction ADC as shown Fig. 1.

JRC

(1-7) Timing Generator

This Generator generates the common timing and frame signal for 1/16 and 1/32 duty selecting by Duty Select Instruction from the master clock.

In the case of the 1/32 duty, 2 chip of master and slave chip should be combined, and both of common are synchronized by the common multi-chip method. (Refer the figure shown below)

FR (Master C	utput)	•
Master Common	$0\times1\times2$ -14×15 $0\times1\times2$ -14×15 $$	•
Slave Common		•

(1-8) Display Data Latch

Display Data Latch stores 80-bit of one line display data for each common cycle which read out from the Display Data RAM temporary and transfer this data to the LCD Driver. The Display On/Off and Static Drive On/Off controls the latched data only, therefore, the data in the Display Data RAM is no change and keep on remaining.

(1-9) LCD Driving Circuits

This Driver is consists of 80-multiplexer which output the 4-level of LCD driving voltage. The output waveform is determined by the combination of the data in the Display Data Latch, Common Timing Generator and FR signal

(1-10) Display Timing Generator

This Generator generates the timing signal for the display system by combination of the master clock and Frame Driving Signal FR. The Frame Driving Signal FR has a function to generate the 2 frame alternative driving method waveform for the LCD panel, and synchronizing the line counter and common timing generator to the master LSI. Therefore, the FR signal must be 50% duty ratio clock signal which synchronized with the frame signal.

N J U 6 4 5 2 A

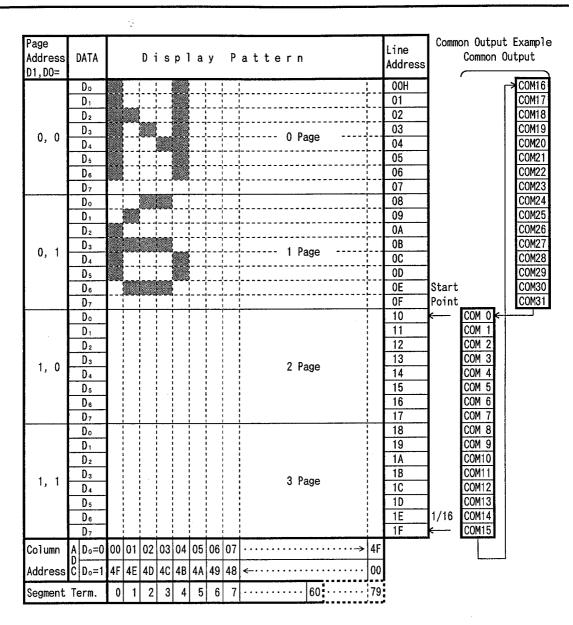


Fig. 1. Correspondence with Display Data RAM and address (For example the display start line is 10th and 1/32 duty)

JRC

(1-11) Reset Circuits

The NJU6452A performs following initialization by detecting the rising or falling edge of the $\overline{\text{RST}}$ input after the power turns on.

Initialization

- Display Off
- ② Set the 1st line to the Display Start Register
- ③ Static Drive Off
- ④ Set the address "0" to the Column Address Counter
- (5) Set the page "3" to the Page Address Register
- ⑥ Select the 1/32 duty
- (7) Select the ADC : Counterclockwise output
 - (ADC instruction $D_0 = "0"$, ADC status flag "1")
- (8) Read Modify Write Mode Off

The $\overline{\text{RST}}$ terminal input level is used to select the interface of 80 or 68 type MPU as shown in Table. 2. Therefore, the "H" level input through the inverter is required when connecting the 80 type MPU, and "L" level input is required when connecting the 68 type MPU as shown in application circuits 1.

The $\overline{\text{RST}}$ terminal must be connect to the Reset Terminal of MPU and reset at same time with it. The dead-lock may occur if the no initialization by the $\overline{\text{RST}}$ terminal when the power terns on. By the RESET instruction, the initialization of ② and ⑤ mentioned above are executed.

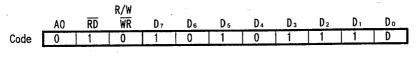
5

(2) Instruction

The NJU6452A distinguish the signal on the data bus by combination of AO and $R/W(\overline{RD},\overline{WR})$. Normally, the busy check is not required as the NJU6452A is operating so first because of the decode of the instruction and execution are performs only depend on the internal timing which not depend on the external clock.

The Table. 1 shows the instruction codes of the NJU6452A.

N J U 6 4 5 2 A

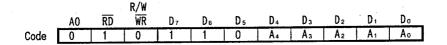

Table 1. Instruction Code

				C	o d	е						Descript	ion		
Instruction	AO	RD	WR	D7	De	Ds	D₄	D₃	D2	Dı	Do	Descript			
Display On / Off	0	1	0	1	0	1	0	1	1	1	0/1	Whole Display On/Off. 1:On,O:Off(Power Save mode if the static Drive On)			
Display Start Line	0	1	0	1	1	0	Dis	play (Start 1~31	Addr)	ess	Determine the correspond to	Display Line the COMo.		
Page Address Set	0	1	0	1	0	1	1	1	0		,ge ~3)	Set the Page o RAM to the Pag			
Column Address Set	0	1	0	0		C		Addr 0∼79				Set the Column Display Data R Column Registe	AM to the		
Status Read	0	0	1	B U S Y	A D C	ON OFF	R E S E T	0	0	0	0	0:Count	ng wise Output erclockwise Off O:Disp On		
Write Display Data	1	1	0		L		Write	e Data	1			Write the data to the Display Data RAM. Write the predeter- mined add- ress of the Display Data			
Read Display Data	1	0	1				Read	Data				Read the data from the Display Data RAM.	RAM. The Column address inc- rement "1" after read or write.		
ADC Select	0	1	0	1	0	1	0	0	0	0	0/1	Determine the counterclockwi of the Display O:Clockwise 1:Counterclo	se reading / Data RAM.		
Static Drive On / Off	0	1	0	1	0	1	0	0	1	0	0/1	Static Driving 1:Static Dr	g. riving er Saving)		
Duty Ratio Select	0	1	0	1	0	1	0	1	0	0	0/1	Select the du 1:1/32 Duty	ty ratio. y 0:1/16 Duty		
Read Modify Write	0	1	0	1	1	1	0	0	0	0	0	Increment the Column Add- ress register when writing but no-change when reading.			
End	0	1	0	1	1	1	0	1	1	1	0	Release from the Read Modify Write Mode.			
Reset	0	1	0	1	1	1	0	0	0	1	0	Set the Display Start Line Register to 1st line, Page Add. Register to "3".			
Power Save (Dual	0	1	0	1	0	1	0	1	1	1	0	Set the power selecting Dis Static Drivin	play Off and		
Command)	U U		1.0		U			U.	<u> </u>	`	1				

- (3) Explanation of Instruction Code.
 - (a) Display On/Off

This instruction executes whole display On/Off no relation with the data in the Display Data RAM and internal conditions.

D 0 : Display On 1 : Display Off


When the static driving mode is selected (static drive On) in display Off status, the internal circuits put on the power save mode.

(b) Display Start Line

This instruction set the line address as shown Fig. 1. The selected line in the Display Data RAM correspond to the COM_0 which display at the top of LCD panel.

The display area is set automatically from the selected line to the line which increased the number of duty ratio.

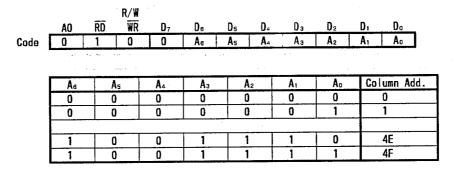
Therefore, the smooth scroll for vertical direction by changing the start line address one by one or page switching are available by this instruction.

A4	Aз	A2	Aı	Ao	Line Address
0	0	0	0	0	0
				1	1
1	1	1	1	0	1E
1	<u> </u>	1	1	1	1F

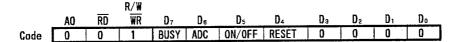
(c) Page Address Set

When MPU access the Display Data RAM, the page address corresponded to the row address must be selected.

The access in the Display Data RAM is available by setting the page and column address. (Refer the Fig. 1.)


The display is no change when the page address is changed.

A1	Ao	Page
0	0	0
0	1	1
1	0	2
1	1	3


(d) Column Address Set

This instruction set the column address in the Display Data RAM.(See Fig.1.) When the MPU access the Display Data RAM continuously, the column address increase "1" automatically, therefore, the MPU can access the data only without address setting. The increment of the column address is stopped by the address of $50_{\rm H}$ automatically, but the page address is no change even if the column address increase to $50_{\rm H}$ and stop.

(e) Status Read

This instruction read out the internal status.

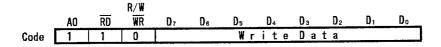
BUSY : BUSY=1 indicate the operating or the Reset cycle. The instruction can be input after the BUSY status change to "0".

ADC : Indicate the output correspondence of column(segment) address and segment driver.
0 :Counterclockwise Output(Inverse) Column Address 79-n ←→ Segment Driver n
1 :Clockwise Output (Normal) Column Address n ←→ Segment Driver n

ON/OFF : Indicate the whole display On/Off status.

0 : Whole Display "On"

- 1 : Whole Display "Off"
- (Note) The data "O=On" and "1=Off" of Display On/Off status read out is inverted with the Display On/Off instruction data of "1=On" and "O=OFf".

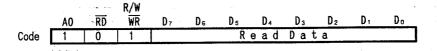

RESET : Indicate the initialization period by RST signal or reset instruction.

0: - -

1 : Initialization Period

(f) Write Display Data

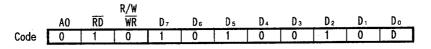
This instruction write the 8-bit data on the data bus into the Display Data RAM. The column(segment) address increase "1" automatically when writing, therefore, the MPU can write the 8-bit data into the Display Data RAM without address setting.



(g) Read Display Data

This instruction read out the 8-bit data from Display Data RAM which addressed by the column and page address. In case of the Read Modify Write Mode is Off, the column address increase "1" automatically after each read out, therefore, the MPU can read out the 8-bit data from the Display Data RAM continuously without address setting.

One time of dummy read must be required after column address set as explain in (4-3).

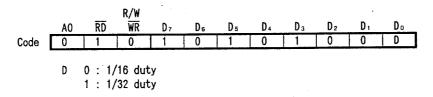

(h) ADC Select

This instruction set the correspondence of column address in the Display Data RAM and segment driver output. (See Fig. 1.) Therefore, the order of segment output can be changed by the software, and no restriction of the LSI placement against the LCD panel.

	A0	RD	R∕₩ ₩R	D7	De	D₅	D₄	D3	D2	Dı	Do
Code	0	1	0	1	0	1	0	0	0	0	D
	D	0 : C1 1 : Cc			out ise Out		(Invers (Normal				

(i) Static Drive On/Off

This instruction executes the all common output terns on and whole display on obligatory.

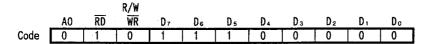


D 0 : Static Drive Off (Normal Operation) 1 : Static Drive On (Whole Display Turns On)

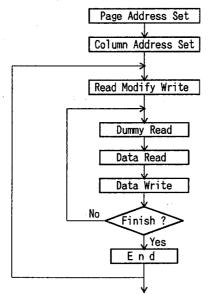
When the Display Off mode is selected (Display Off) in Static Drive On status, the internal circuits put on the power save mode.

(j) Duty Select

This instruction set the LCD driving duty ratio.

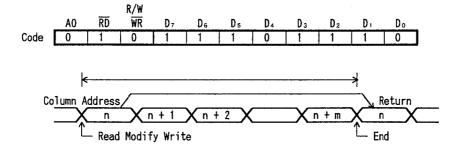


(k) Read Modify Write


After this instruction is executed, the column address increase "1" automatically when Display Data Write Instruction execution, but the address is not changed when the Display Data Read Instruction execution.

This status continues during End instruction execution. When the End instruction is entered the column address back to the address where Read Modify Write instruction entering.

By this function, the load of MPU for example cyclic data writing operation like as cursor blink etc., can be reduced.



- Note) During the Read Modify Write mode, any instruction except Column Address Set can be executed.
- (1) Sequence of cursor display

(m) End

This instruction release the Read Modify Write mode and the column address back to the address where the read modify write mode setting.

JRC

(n) Reset

This instruction executes the following initialization.

Initialization

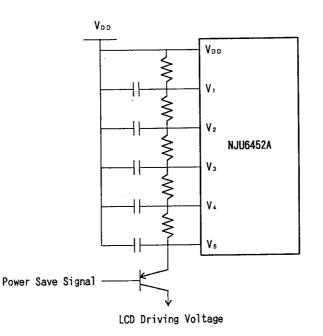
① Set the 1st line in the Display Start Line Register.

② Set the page 3 in the Page Register.

In this time, there are no influence to the Display Data RAM.

R/₩ D۵ A0 RD WR De D، D, D-D₂ D D. Ò 0 0 0 0 Code Ô 1

The reset signal input to the $\overline{\text{RST}}$ terminal must be required for the initialization when the power terms on.


(Note) The initialization when the power turns on can not be executed by Reset instruction.

(o) Power Save(Dual Command)

When both of Display Off and Static Drive On are executed, the internal circuits put on the power save mode and the current consumption is reduced as same as stand by current. The internal status in this mode are as follows;

- Stop the LCD driving. Segment and Common drivers output V_{DD} level.
- ② Stop the oscillation or inhibit the external clock input. Then the terminal OSC₂ becomes floating status.
- (3) Keeping the display data and operating mode.

The power save mode is released by Display on or static drive off instruction. To reduce the total power consumption, the current flow on the bleeder resistance must be cut by the transistor etc. during the power save mode as shown below.

(4) MPU Interface

(4-1) 68 or 80 type MPU interface selection.

The NJU6452A can interface both of 68 or 80 type MPU bus directly by setting the RST level after reset instruction entered as shown Table. 2.

The data transfer is executed between $D_{\circ} \sim D_{7}$ of NJU6452A and the MPU data bus.

Duaring the CS signal is "H", the NJU6452A rereased from the the MPU and becomes stand-by mode. But the reset instruction can be input though the internal status of NJU6451A.

Table, 2.

Level of RST	Type of MPU	AO	Е	R/W	D ₀ ~ D ₇
"H"	68 type	1 Î	Î	î	Î
″L″	80 type	Î	RD	ŴŔ	1

(4-2) Discrimination of the data bus signal.

The NJU6452A discriminates the data bus signal by combination of AO, $E(\overline{RD})$, and $R/W(\overline{WR})$ signals as shown Table. 3.

Table. 3.

Common	68 type	80 t	уре	Function			
AO	R/W	RD	ŴŔ	FUNCTION			
1	1	0	1	Display Data Read out			
1	0	1	0	Display Data Write			
0	1	0	1	Status Read			
0	0	1	0	Command Input to the Register			

(4-3) Access to the Display Data RAM and Internal Register.

The NJU6452A is operating as one of Pipe-line processor by the bus-holder connecting to the internal data bus to adjust the operation frequency between MPU and the Display Data RAM or Internal Register.

For example, when the MPU write the data into the Display Data RAM, the data is held in the bus-holder at once then write into the Display Data RAM by next data write cycle.

Therefore high speed data transmission between MPU and NJU6452A is available because of the limitation of access time of NJU6452A locking from MPU is just determined by the cycle time only which ignored the access time of t_{ACC} and t_{DS} of Display Data RAM.

If the cycle time can not be kept in the MPU operation, NOP operation cycle must be insert which equivalent to the waiting operation.

Please note that the read out data is a address data when the read out execution just after the address setting. Therefore, one dummy read is required after address setting or write cycle as shown in Fig. 2.

JRO

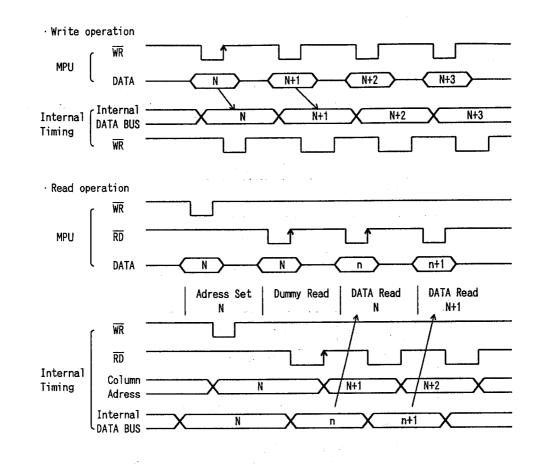


Fig.2 MPU Interface Timing

JRC

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage (1)	Voo .	- 0.3 ~ + 7.0	V
Supply Voltage (2)	$V_1 \sim V_5$ (3)	Voo-13.5 ~ Voo+0.3	V
Input Voltage	VIN	- 0.3 ~ Voo+0.3	V
Operating Temperature	Topr	- 30 ~ + 80	°C
Storage Temperature	Tstg	- 55 ~ + 125	°C

Note 1) If the LSI are used on condition above the absolute maximum ratings, the LSI may be destroyed. Using the LSI within electrical characteristics is strongly recommended for normal operation. Use beyond the electric characteristics conditions will cause malfunction and poor reliability.

Note 2) All voltage values are specified as $V_{ss} = 0$ V.

Note 3) The relation : $V_{DD} \ge V_1 \ge V_2 \ge V_3 \ge V_4 \ge V_5$ must be maintained.

ELECTRICAL CHARACTERISTICS

(V₀₀=5V±10%, V₅₅=0V, Ta=-20~+75°C)

PARAM	ETER	SYMBOL	CONDI	TIONS	MIN	түр	MAX	UNIT	Note
Operating	Recommend	v		• .	4.5	5.0	5.5	v	
Voltage(1)	Available	Voo			2.4		6.0		4
	Recommend	v	· ·		Voo-13.5		Voo-3.5		
Operating	Available	V₅			V ₀₀ -13.5			v	
Voltage(2)	Available	V2	VLCD=VDD-V5	,	Voo-0.6xV	LCD	Voo] `	
	Available	۷ ₃	VLCD=VDD-V5	and the second	Vs ·	Voo	-0.4xVLCD		
	1	VIHT	CS, AO, D₀~	D7, E, R/W	2.0		VDD		
Input	I	VILT		Terminals	Vss		0.8	v	
Voltage	2	Vıнс	CL, FR, RST		0.8xVpp		VDD] '	
	2	VILC		Terminals	Vss		0.2xV00		
		Vонт	Do~D7	Iон=-3.0mA	2.4	-			
Output		VOLT	Terminals	IoL= 3.0mA			0.4		
Voltage	4	Vonci	FR Terminal	Iон=-2.0mA	2.4			v	
	1	VOLCI	rn terminat	IoL= 2.0mA			0.4	· ·	
Input Leaka	ge	ILI	AO, E, R/W,	CS, CL, RST	-1.0		1.0	uA	
	Current	Ιιο	D₀∼D7, FR T	erminals	-3.0		3.0	ů.	5
Dation On a		B	Ta=25°C	V₅=V _{DD} -5.0V		5.0	7.5	kΩ	6
Driver On-r	esistance	Ron		V5=V00-3.5V				K 32	
Stand-by Cu	rrent	Ισοα	CS=CL=Vpc			0.05	1.0	uA	
Occuption - 0		IDDI	Display V₅=V fc∟=2kHz	00-5.0V,		2.0	5.0	uA	
Operating C	urrent	Ioo2	Accessing, t	cyc=200kHz		300	500	UA	7
Reset time		t,	RST Terminal		1.0		1000	us	

Note 4) NJU6452A can operate wide operating range, but it is not guarantee immediate voltage changing during the accessing of the MPU.

141 (14 This (24 D

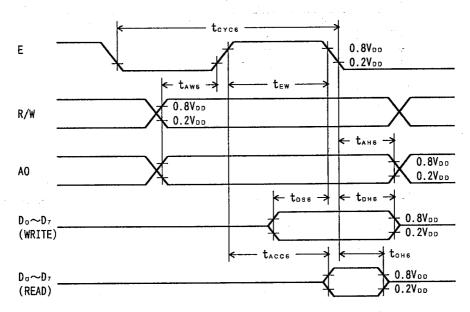
- Note 5) Apply to the High-impedance state of DO to D7 and FR terminals.
- Note 6) R_{ON} is the resistance values between power supply terminals(V_1, V_2, V_3, V_4) and each output terminals of common and segment supplied by 0.1V.
- Note 7) The IDD2 is specified under the condition of cyclic(tcyc)inverted data input continuously. The operating current during the accessing is proportionate to the frequency of tcyc. In the no accessing it is as same as IDD1.

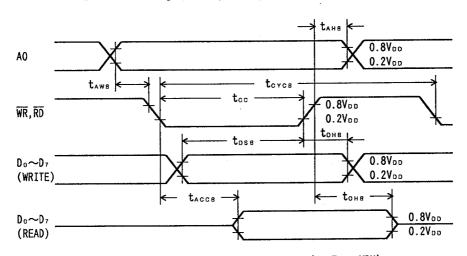
BUS TIMING CHARACTERISTICS

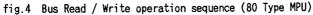
PARA	ΜΕΤΕ	R	SYMBOL	MIN	MAX	CONDITION	UNIT
Address Set l	Jp Time	40 D/W	t _{aw6}	20			
Address Hold Time System Cycle Time		Terminals	t _{AH6}	10			
			teres .	1000		2 A 19	
Enable ·	Read		tew	100	44 - 1 - 1 - 1	a and an	
Pulse Width	Write	AO, R/W Terminals E Terminal D₀~D7 Terminals	LEW	80			ns
Data Set Up Time			t _{os6}	80			115
Data Hold Time		Do~D7	tons	10			
Access Time		Terminals	tACC6	**	90	С.=100рF	
Output Disab	le Time		t _{CH6}	10	60	or~ioobi.	

· Read / Write operation sequence (68 Type MPU) ($V_{p_p}=5.0V \pm 10\%, V_{s_s}=0V, Ta=-20 \sim +75^{\circ}C$)

Note 8) Input signal rise time(tr) and fall time(tr) are less than 15ns.



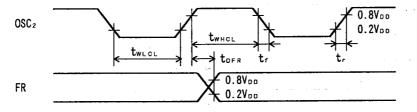

fig.3 Bus Read / Write operation sequence (68 Type MPU)

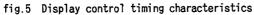


PARAMETE	SYMBOL	MIN	MAX	CONDITION	UNIT	
Address Set Up Time	AO	tAWB	. 20		and the second	····
Address Hold Time	Terminal	t _{ahb}	10			
System Cycle Time RW, WR		teres	1000			
Control Pulse Width	Terminals	t _{cc} .	200			
Data Set Up Time		tosa	80			ns
Data Hold Time Do~D7 RD Access Time Terminals Output Disable Time		-D7 tons	10			
		t _{ACC8}		90	- CL=100pF	
		tснв	10	.60		

· Read / Write operation sequence (80 Type MPU) $(V_{DD}=5.0V\pm10\%, V_{SS}=0V, Ta=-20\sim+75^{\circ}C)$

Note 9) Input signal rise time(tr) and fall time(tr) are less than 15ns.

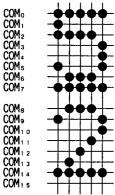


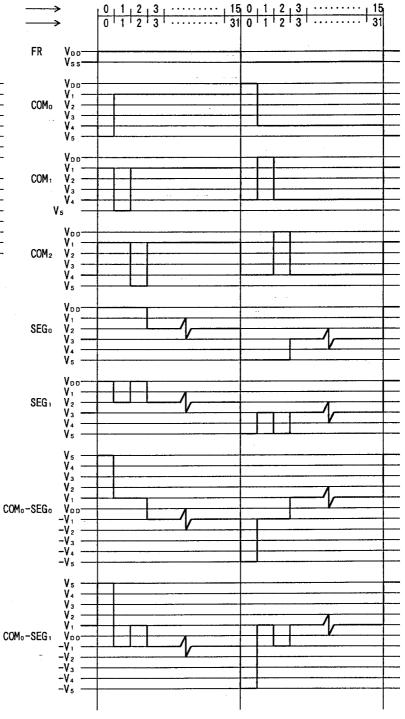

 \cdot Display control timing characteristics (Both of 68 and 80 type MPU)

Input Timing	(V _{op} =5.0V±10%,V _{ss} =0V,Ta=-20~+75°C)						
PARAMETER	SYMBOL	MIN	ТҮР	MAX	CONDITION	UNIT	
"L" level Pulse Width	twici	35				us	
"H" level Pulse Width	twhel	35					
Rise Time	tr		30	150			
Fall Time	tr	1	30	150		ns	
FR Delay Time (NJU6452A Slave)	tofr	-2.0		2.0		us	

Output Timing

PARAMETER	SYMBOL	MIN	ТҮР	MAX	CONDITION	UNIT
FR Delay Time (NJU6452A Master)	tofr		0.2	0.4	CL=100pF	us

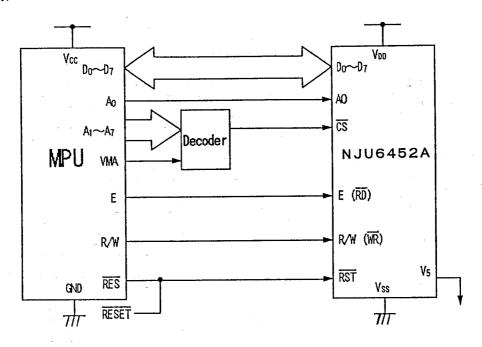


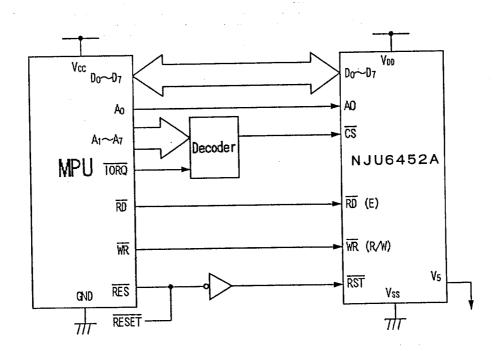


JRC

LCD DRIVING WAVEFORM

1/5 BIAS, 1/16 DUTY 1/6 BIAS, 1/32 DUTY

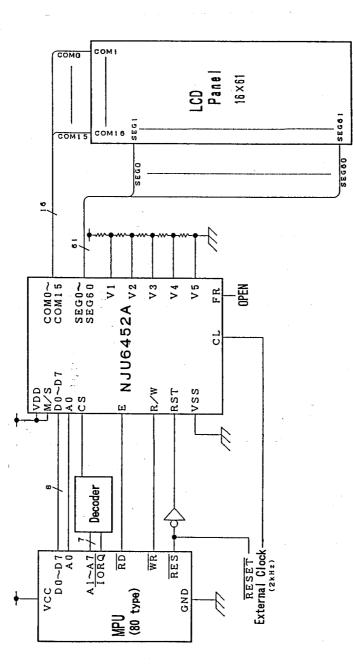




APPLICATION CIRCUITS 1

· 68 type MPU Interface

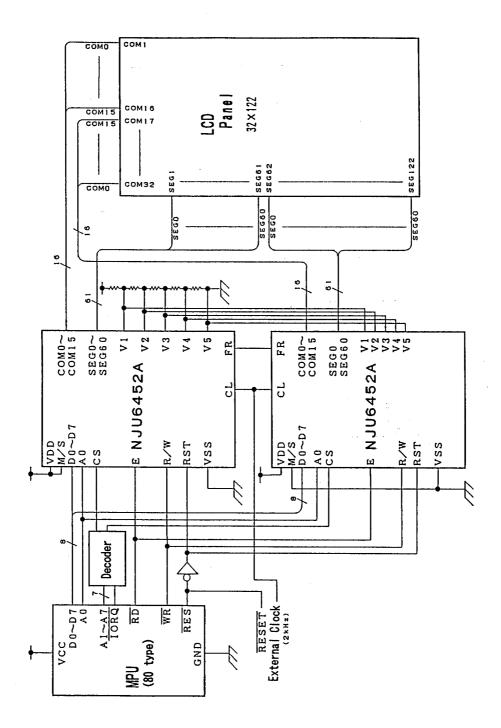
· 80 type MPU Interface



JRC

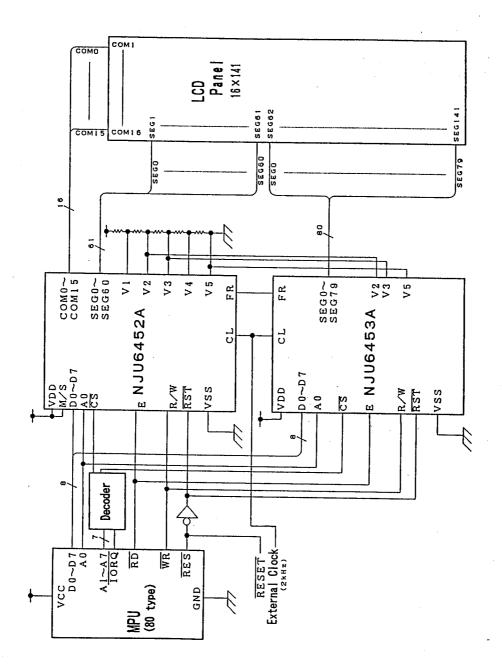
5

APPLICATION CIRCUITS 2


(1) 16 x 61 dots Driving Application Circuits (NJU6452A Single Operation)

JRC

(2) 32 x 122 dots Driving Application Circuits


(Common and Segment Drivers Extension by using two of NJU6452A)

JRC

(3) 16 x 141 dots Driving Application Circuits

(Segment Drivers Extension by using NJU6453A)

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

- Now Janan Padia Ca Std -