COMPANDOR

KA8512

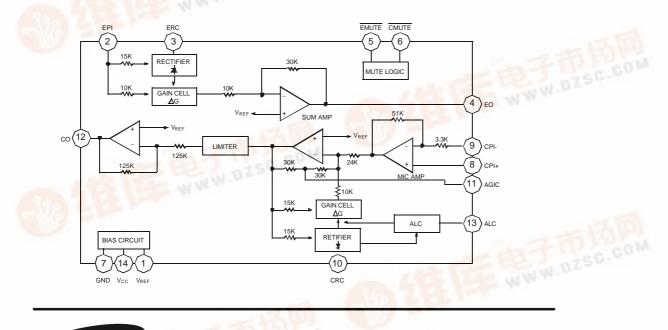
INTRODUCTION

Compandor is a composite word of compressor and expander. It is used for maintaining dynamic range and improving of S/N ratio, and generally called as a noise reduction system or automatic gain control system. KA8512 consists of compressor, expander, mic amp, limiter, ALC(automatic level control) and mute logic.

WWW.DZSC

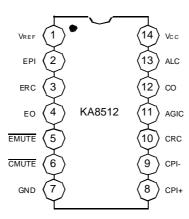
FEATURES

- Operating voltage range : 2 ~ 6V
- Included ALC circuit
- Easy gain control to use external component
- Included mute function



ORDERING INFORMATION

Device	Package	Operating Temperature
KA8512	14-DIP-300	-20°C ~ + 70°C
KA8512D	14-SOP-225B	2000 1100


BLOCK DIAGRAM

SAMSUNG ELECTRONICS

PIN CONFIGURATION

PIN DESCRIPTION

Pin No	Symbol	Description		
1 V _{REF}		It is a voltage reference (V_{REF} =1V) used for supplying a constant voltage		
		to the compressor and expander of compandor.		
		It is SUM AMP input terminal of expander. The voice signal recoverd after		
2	EPI	the demodulation waveform from the receiver passed through the 2'nd order		
		low pass filter enters this terminal.		
		This terminal is used for converting waveform from the full wave rectifier to		
3	ERC	DC element at the rectifier block of expander		
		(R X C = 22msec)		
4	EO	It is an output terminal of expander, which a regenerated voice signal		
4	EO	comes out.		
		It is an expander mute terminal of compandor and the final mute block		
	EMUTE	of an expander located next to the receiver terminal. It blocks the data sig-		
5		nal of MICOM being transmitted to an user, and is connected to the RX		
		mute terminal of MICOM.		
		Expanding is executed if this terminal is high, and expander mute is exe-		
		cuted if it is low.		

KA8512

PIN DESCRIPTION (Continued)

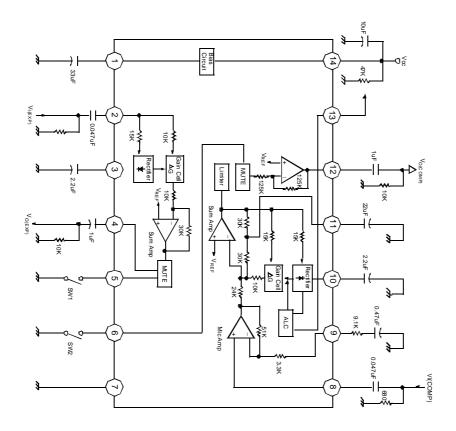
Pin No	Symbol	Description		
		It is compressor mute terminal of a compandor.		
		Mute block is used to avoid duplication of data transmission from MICOM		
6	CMUTE	(Between the base and hand set) with the voice signal.		
		It is connected to the TX mute terminal of MICOM.		
		Compressing is executed if the terminal is high, and compressor mute is		
		executed if it is low.		
7	GND	It is ground terminal.		
8	CPI+	It is a MIC AMP non-inverting input terminal of compressor, and is used		
0	CFI+	as an input terminal for voice signal.		
		It is a MIC AMP inverting input terminal of compressor, and is used for		
9	CPI-	adjusting the negative feedback loop gain.		
		(In application, gain is about 5)		
		This terminal is used for converting waveform from the full wave rectifier		
10	CRC	to DC element at the rectifier block of compressor.		
		(R X C = 22msec)		
		This terminal is used for bypassing an AC element at the feed-back loop		
11	AGIC	which comes from the SUM AMP block of compressor. A capacitor should		
		be connected between this terminal and GND.		
12	со	It is a compressor output terminal of compandor, and is connected to the		
12		modulation input terminal of transmitter.		
	ALC	It is a reference voltage input terminal of ALC (Automatic Level Control).		
		ALC circuit may be turned off according to the ALC reference voltage, ma-		
13		gnitude of output voltage may be limited if it is used for adjusting THD of		
		output voltage of compressor to less than 3% or to limit the frequency of		
		TX in case the input is higher than a certain level.		
14	V _{cc}	It is supply voltage terminal.		

KA8512

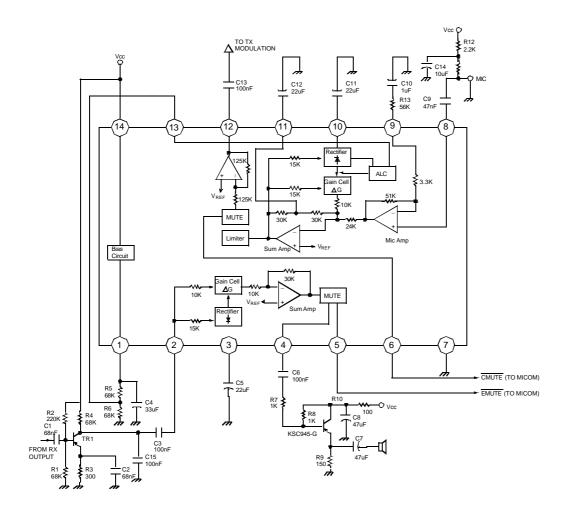
ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Maximum Supply Voltage	V _{CC(MAX)}	7	V
Power Dissipation	PD	600	mW
Operating Temperature	T _{OPR}	- 20 ~ + 70	°C
Storage Temperature	T _{STG}	- 55 ~ + 150	°C

ELECTRICAL CHARACTERISTICS


(V_{CC} = 3V, f = 1KHz, Ta = 25°C, Unless otherwise Specified)

Characteristic	Symbol	Test Conditions	Min	Тур	Max	Unit	
DC Electrical Characteristics							
Operating Voltage	V _{cc}	-	2.0	-	6.0	V	
Operating Current	lcc	No Signal	-	3.6	6.0	mA	
Compressor Part	Compressor Part						
Reference Voltage	V _{REF}	No Signal	0.9	1.0	1.1	V	
Standard Output Voltage	N/	V _{INC} = 13mVrms	240	300	340	mVrms	
	V _{O(COMP)}	= 0dB	240				
	$\Delta~G_{V1(COMP)}$	V _{INC} = -20dB	-0.5	0	+0.5	dB	
Gain Difference	$\Delta~G_{V2(COMP)}$	$V_{INC} = -40 dB$	-1.5	0.7	0	dB	
Output Distortion	THD _{COMP}	V _{INC} = 0dB	-	0.5	1.0	%	
Mute Attenuation Ratio	ATT _{MUTE}	$V_{INC} = 0 dB$	60	80	-	dB	
Limiting Voltage	V _{LIM(COMP)}	V _{INC} = Variable	1.15	1.35	1.5	V _{P-P}	
ALC	V _{ALCO}	$V_{ALC} = 0.87V$	280	325	360	mVrms	
Expander Part							
Standard Output Voltage	V _{O(EXP)}	V _{INE} = 180mVrms	110	130	160	mVrms	
Standard Output Voltage		= 0dB	110				
	$\Delta~G_{\text{V1(EXP)}}$	$V_{INE} = -10 dB$	+1.0	+0.5	0	dB	
Gain Difference	$\Delta G_{V2(EXP)}$	V _{INE} = -20dB	-1.5	-0.7	0	dB	
	$\Delta~G_{\text{V3(EXP)}}$	V _{INE} = -30dB	-1.5	0	+1.5	dB	
Output Distortion	THD _{EXP}	V _{INE} = 0dB	-	0.5	1.5	%	
Mute Attenuation Ratio	ATT _{MUTE}	V _{INE} = 0dB	60	85	-	dB	
Maximum Output Voltage	V _{OEXP(MAX)}	V _{INE} = Variable	500	600	-	mVrms	



TEST CIRCUIT

APPLICATION CIRCUIT

