

KBP101G THRU KBP107G

Single Phase 1.0 AMP. Glass Passivated Bridge Rectifiers

Voltage Range 50 to 1000 Volts Current 1.0 Ampere

Features

- ♦ UL Recognized File # E-96005
- ♦ Glass passivated junction
- ♦ Ideal for printed circuit board
- ♦ Reliable low cost construction
- High surge current capability
- → High temperature soldering guaranteed: 260°C / 10 seconds at 5 lbs., (2.3 kg) tension

 → High temperature soldering guaranteed: 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs., (2.3 kg)

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.

 → High temperature soldering guaranteed:

 260°C / 10 seconds at 5 lbs.
- Leads solderable per MIL-STD-202, Method 208
- ♦ Small size, simple installation

Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60 Hz, resistive or inductive load.

For capacitive load, derate current by 20%

For capacitive load, derate current by 20%								
Symbol	KBP 101G	KBP 102G	KBP 103G	KBP 104G	KBP 105G	KBP 106G	KBP 107G	Units
V_{RRM}	50	100	200	400	600	800	1000	V
V_{RMS}	35	70	140	280	420	560	700	V
V_{DC}	50	100	200	400	600	800	1000	V
I _(AV)				1.0	41	T	£ 1	Α
I _{FSM}	. Frid		-18	30				Α
V _F	CON			1.0				V
l _o				10				uA
-17				500				uA
$R\theta_{JA}$				28				℃/W
$R heta_{JL}$				10				
TJ	-55 to +150							${\mathbb C}$
T _{STG}	-55 to +150							ပ္
	VRRM VRMS VDC I(AV) IFSM VF R \theta_{JA} R \theta_{JL} T_J	$ \begin{array}{c c} {\bf Symbol} & {\bf KBP} \\ {\bf 101G} \\ {\bf V_{RRM}} & {\bf 50} \\ {\bf V_{RMS}} & {\bf 35} \\ {\bf V_{DC}} & {\bf 50} \\ {\bf I_{(AV)}} \\ \\ {\bf I_{FSM}} & \\ \\ {\bf V_F} & \\ \\ {\bf I_R} \\ \\ {\bf R} \theta_{\rm JL} \\ \\ {\bf T_J} & \\ \\ \end{array} $	Symbol KBP 101G KBP 102G V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _(AV) V _F I _R R θ _{JA} R θ _{JL} T _J	Symbol KBP 101G KBP 102G KBP 103G V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _(AV) I _{FSM} I _R V _F I _R I _R R θ _{JA} R θ _{JL} I _R I _R T _J -55	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Note: Thermal Resistance from Junction to Ambient and from Junction to lead Mounted on P.C.B. With 0.2" x 0.2" (5mm x 5mm) Copper Pads.

RATINGS AND CHARACTERISTIC CURVES (KBP101G THRU KBP107G)

FIG.2- MAXIMUM FORWARD CURRENT DERATING CURVE

1.5

1.5

1.0

2.0

4.0

6.0

8.0

1.0

1.0

AMBIENT TEMPERATURE. (°C)

FIG.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS PER BRIDGE ELEMENT

FIG.4- TYPICAL REVERSE CHARACTERISTICS

