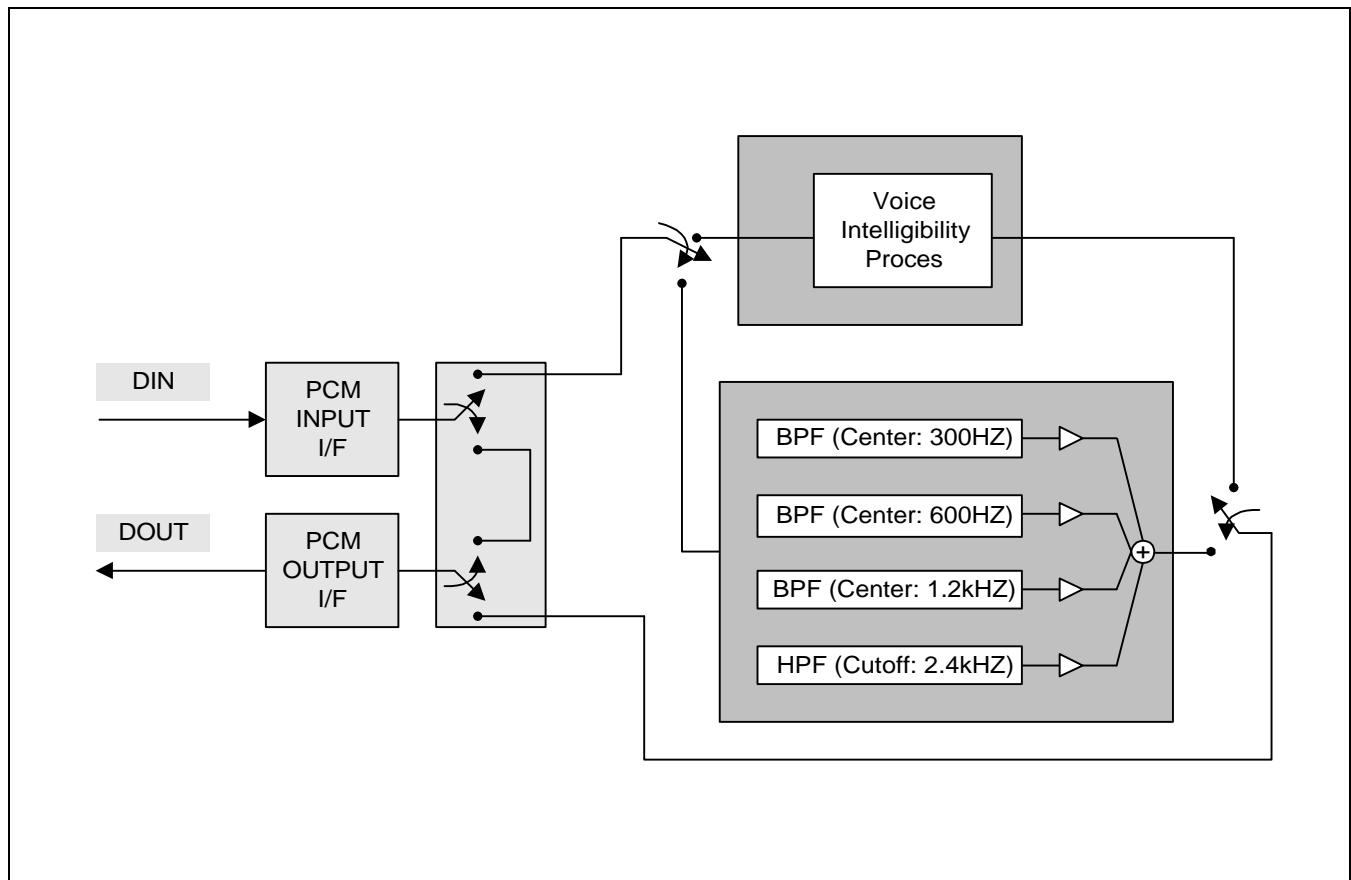
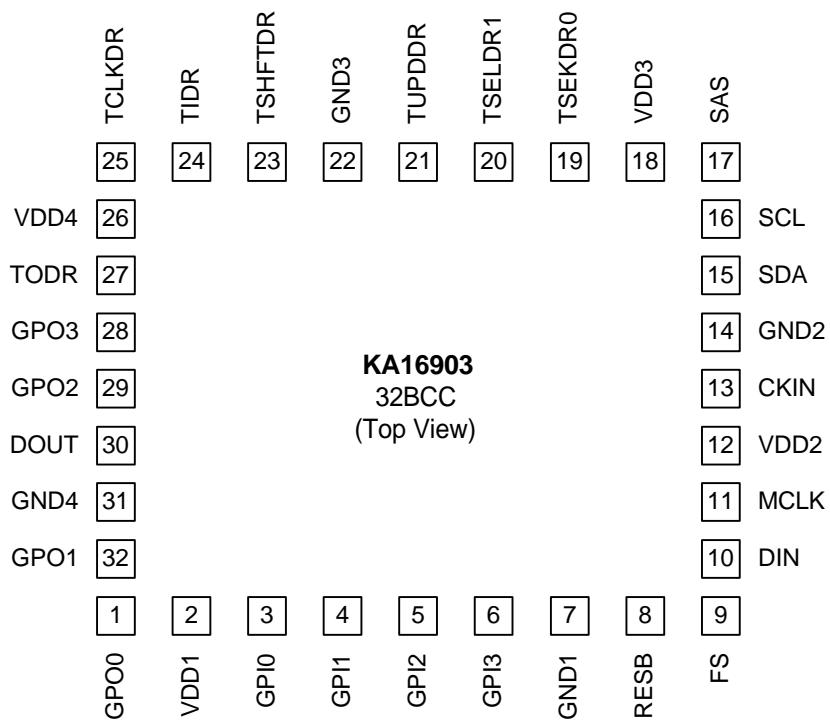



## 1. BLOCK DIAGRAM


### 1.1 SYSTEM BLOCK DIAGRAM




## 1.2 CHIP BLOCK DIAGRAM



## 1.3 FUNCTIONAL BLOCK DIAGRAM

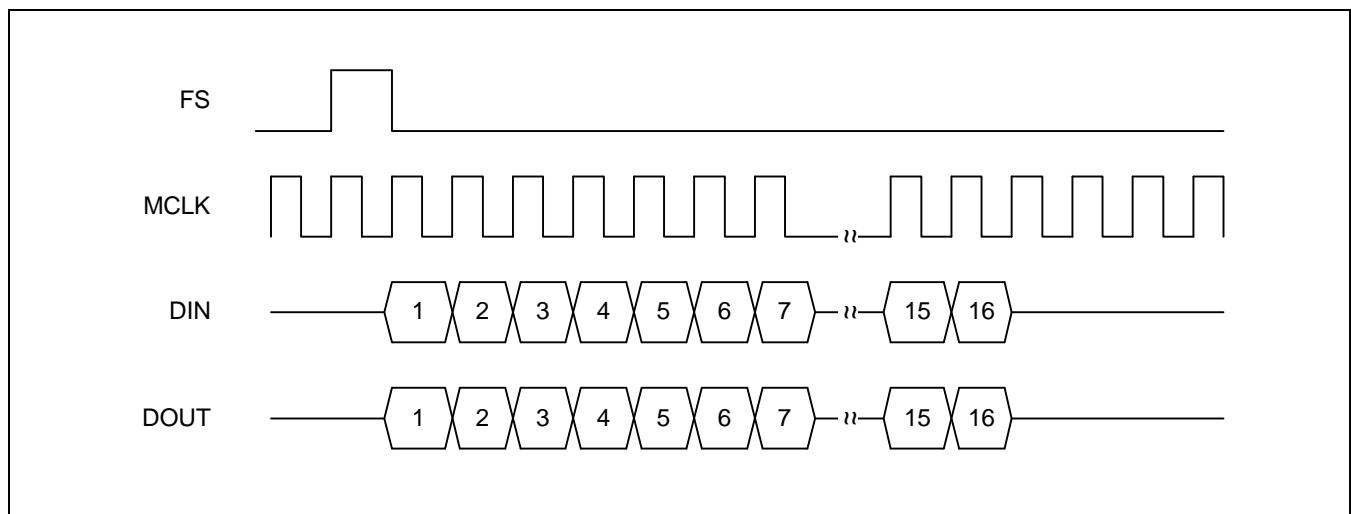


## 2. PIN ASSIGNMENTS



### 3. PIN DESCRIPTION

| Related Block | PIN NAME                 | PIN NO.          | I/O | Description                               |
|---------------|--------------------------|------------------|-----|-------------------------------------------|
| HIU           | RESB                     | 8                | I   | Reset: Active Low with CKIN(Min 10 cycle) |
|               | SDA                      | 15               | I/O | I <sup>2</sup> C Serial Data              |
|               | SCL                      | 16               | I   | I <sup>2</sup> C Serial Clock             |
|               | SAS                      | 17               | I   | I <sup>2</sup> C Address Selection        |
| CIU           | DIN                      | 10               | I   | 16 Bit PCM Serial Data In                 |
|               | DOUT                     | 30               | O   | 16 Bit PCM Serial Data Out                |
|               | FS                       | 9                | I   | PCM Data Frame Sync.                      |
|               | MCLK                     | 11               | I   | PCM Data Bit Clock                        |
| System        | CKIN                     | 13               | I   | System Clock (9.84MHz)                    |
| TEST          | GPIO0                    | 3                | I   | Test Pin0 (Host INT. Indicator)           |
|               | GPIO1                    | 4                | I   | Test Pin1(0:No Fade, 1:Fade)              |
|               | GPIO2                    | 5                | I   | Test Pin2 (0:RAM Test)                    |
|               | GPIO3                    | 6                | I   | Test Pin3 (0:Codec Bypass)                |
|               | TSELDRO                  | 19               | I   | Test Pin for JTAG                         |
|               | TSELDR1                  | 20               | I   | Test Pin for JTAG                         |
|               | TUPDDR                   | 21               | I   | Test Pin for JTAG                         |
|               | TSHFTDR                  | 23               | I   | Test Pin for JTAG                         |
|               | TIDR                     | 24               | I   | Test Pin for JTAG                         |
|               | TCLKDR                   | 25               | I   | Test Pin for JTAG                         |
|               | TODR                     | 27               | O   | Test Pin for JTAG                         |
|               | GPO0                     | 1                | O   | Host Ack. Pin                             |
|               | GPO1                     | 32               | O   | Host Test Output                          |
|               | GPO2                     | 29               | O   | Host Test Output                          |
|               | GPO3                     | 28               | O   | Host Test Output                          |
| Power         | VDD1, VDD2<br>VDD3, VDD4 | 2, 12,<br>18, 26 | P   | Digital Power (+3.0V)                     |
| Ground        | GND1, GND2<br>GND3, GND4 | 7, 14,<br>22, 31 | G   | Digital GND                               |


#### 4. DSP PORT ASSIGNMENT FOR I/F WITH PERIPHERALS

| I/F | Read/ Write | Port | Interrupt |
|-----|-------------|------|-----------|
| HIU | Read        | EXT1 | INT1      |
|     | Write       | EXT1 |           |
| CIU | Read        | EXT0 | INT0      |
|     | Write       | EXT0 |           |

#### 5. HARDWARE SPECIFICATION

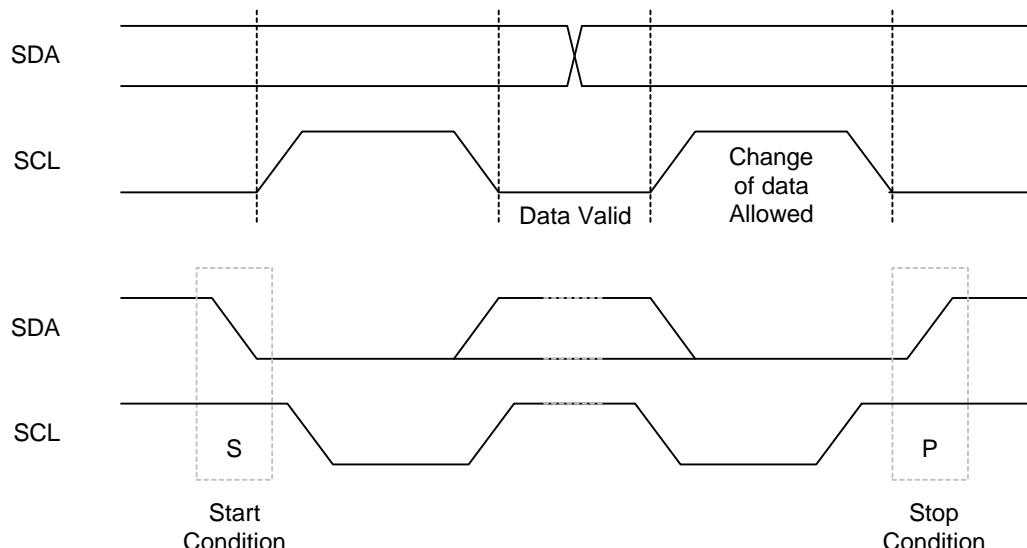
##### 5.1 CODEC INTERFACE UNIT (CIU)

- Time Diagram



Important!:

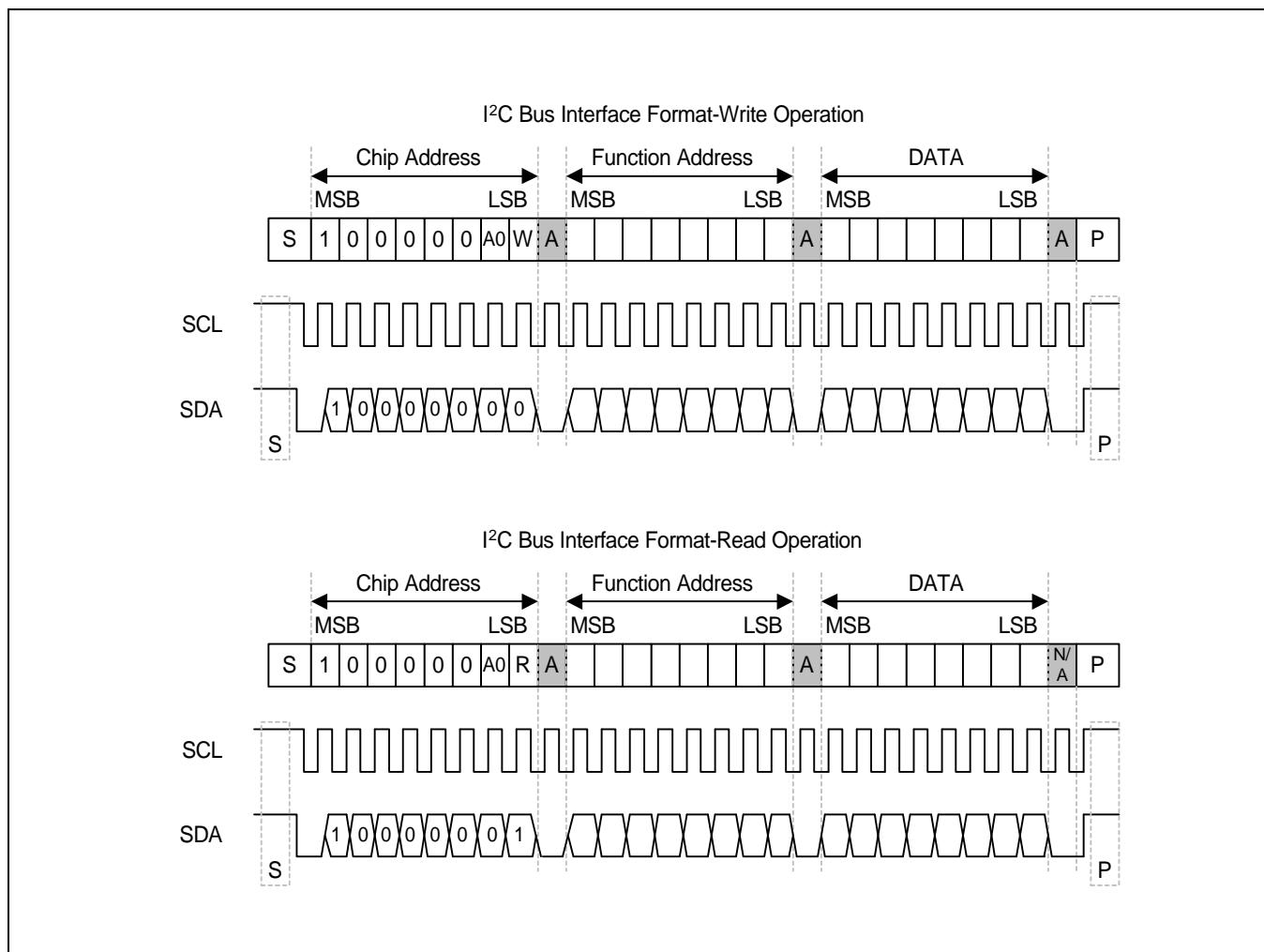
During FS (Frame Sync. Clock) high, the falling edge of MCLK (PCM Bit Clock) should exist one time.


## 5.2 HOST INTERFACE UNIT (HIU)

### - I<sup>2</sup>C Bus Interface

The VIP can be controlled by a microcontroller via the 2-line I<sup>2</sup>C bus, SDA (Serial Data Line) and SCL (Serial Clock Line). Both lines must be connected to a positive supply via pull-up resistor. Data transfer may be initiated only when the bus is not busy. When the bus is free, both lines are high. The data on the SDA line must be stable during the high period of clock, SCL. When the SCL is low, the SDA can change. Every byte transferred through the SDA line must contain 8 bits including programmable slave address and read/write direction control bit. Each byte must be followed by acknowledge bit which is sent back to the microcontroller by the VIP by pulling down the SDA line. The MSB is transferred first.

### - I<sup>2</sup>C bus interface start and stop condition


The start condition is high to low transition of the SDA line while the SCL is high. The stop condition is low to high transition of the SDA line while SCL is high.

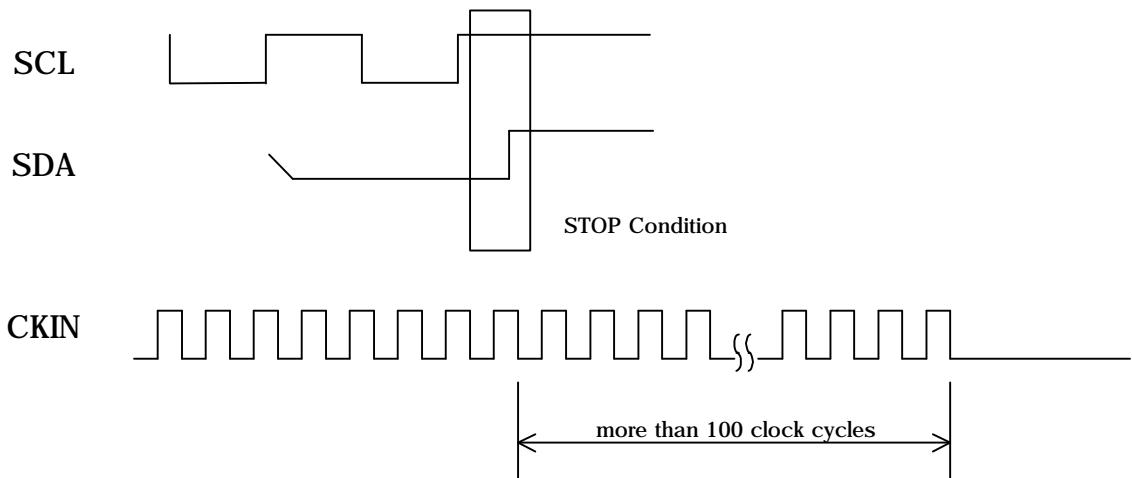


### - I<sup>2</sup>C Bus Interface Acknowledge

The acknowledge related clock pulse is generated by a microcontroller.

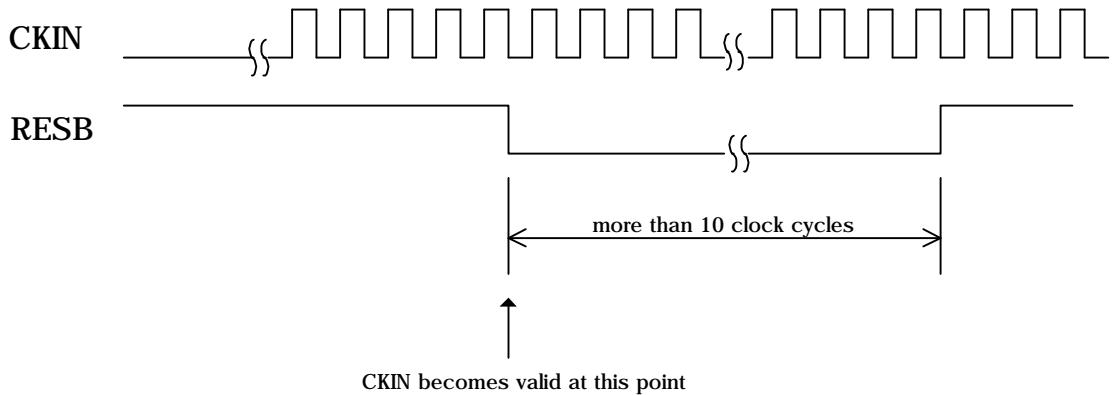
The transmitter releases the SDA line (high) during the acknowledge clock pulse. The receiver must pull down the SDA line during the acknowledge clock pulse so that it remains stable low during the high period of this clock pulse. The slave-transmitter generates negative acknowledge when read operation processes. The negative acknowledge is generated by a master (microcontroller).




### - Relationship between the I<sup>2</sup>C Bus Interface signal SCL/SDA and main clock of KD16903(CKIN)

Commands are sent from MSM to KD16903 via the I<sup>2</sup>C (SDA/SCL) bus, triggered by the input signal CKIN. To achieve immunity towards noise, the glitch protection circuitry must be put into operation, thereby meeting the I<sup>2</sup>C specification.

Thus CKIN should be input with the SDA/SCL.


Another issue is, at least 100 clock(CKIN) cycles are needed to execute the command completely by the KD16903. Even as the end condition of the I<sup>2</sup>C interface is met, the MSM must supply KD16903 with CKIN, as

long as the command is being processed.



### RESET Mechanism

RESB should be held "LOW" for more than 10 cycles.



### Using RESB

The KD16903 consists of an DSP Unit, Host Interface, and a Codec Interface. And between these internal units, information is exchanged via the interrupt mechanism.

None of the internally exchanged informations are available outside the KD16903.

On the handphone, signals FS, MCLK, CKIN are controllable by the MSM. However, it is also likely that the KD16903 may fall into a state of deadlock, since none of these signals are monitorable externally.

Furthermore trying to escape from the deadlock state by resupplying the FSK, MCLK, CKIN may not guarantee nominal operation.

One way to escape from this deadlock state is to use the external reset mechanism. However, it is a good practice using the internal reset mechanism, supplied at a every new CKIN set, hence avoiding this deadlock state altogether.

To avoid deadlock, Rest must be used for following three cases.

1. Initialization to enter stable state of KD16903.
2. When changing CKIN(CHIPX8) from Hold to Running.
3. When start running Vocoder.

Please note that the corresponding commands for the functions (VIP/EQ) must be downloaded after the Reset.

#### **- Hardware Recommendation for Reset**

Separate GPIO port must be assigned for RESB.

## 6. COMMAND

### 6.1 SUMMARY

| IC Address | Command | Data      |                 | Description                                                                                                                                                           |
|------------|---------|-----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80H        | 01H     | -         |                 | Bypass (Default, DSP OFF)                                                                                                                                             |
| 80H        | 02H     | -         |                 | VIP                                                                                                                                                                   |
| 80H        | 03H     | -         |                 | Equalizer                                                                                                                                                             |
| 80H        | 04H     | -         |                 | Equalizer Flat                                                                                                                                                        |
| 80H        | 05H     | -         |                 | Equalizer Mode1                                                                                                                                                       |
| 80H        | 06H     | -         |                 | Equalizer Mode2                                                                                                                                                       |
| 80H        | 07H     | -         |                 | Equalizer Mode3                                                                                                                                                       |
| 80H        | 08H     | -         |                 | Equalizer Mode4                                                                                                                                                       |
| 80H        | 09H     | 00H       |                 | VIP Level 100%                                                                                                                                                        |
|            |         | 01H       |                 | VIP Level 80%                                                                                                                                                         |
|            |         | 02H       |                 | VIP Level 60%                                                                                                                                                         |
| 80H        | 0AH     | Bit[7:5]  | Bit[4:0]        |                                                                                                                                                                       |
|            |         | 000B      | 00000H - 11000H | Band1 Gain Control                                                                                                                                                    |
|            |         | 001B      |                 | Band2 Gain Control                                                                                                                                                    |
|            |         | 010B      |                 | Band3 Gain Control                                                                                                                                                    |
|            |         | 011B      |                 | Band4 Gain Control                                                                                                                                                    |
| 80H        | 0BH     | * * H     |                 | Host Test Mode (Return **H).<br>Read after IC Read Address 0x81                                                                                                       |
| 80H        | 0CH     | Bit [7:4] | Bit [3:0]       |                                                                                                                                                                       |
|            |         | 0H        | 0H - CH         | VIP Filter1 Gain Control                                                                                                                                              |
|            |         | ...       | 0H - CH         | Bit [3:0] = 0H: +12dB,<br>Bit [3:0] = CH: 0dB,<br>1dB Step                                                                                                            |
|            |         | 9H        | 0H - CH         | VIP Filter10 Gain Control                                                                                                                                             |
| 80H        | 0DH     | 00H - FFH |                 | Noise Level Selection                                                                                                                                                 |
| 80H        | 0EH     | 01H       |                 | Return Current Status followed by IC Read Address 0x81, [7:4] = Unused, [3:2] = VIP Level, [1] = Working Mode(0:VIP, 1:EQ), [0] = Bypass Flag (0: DSP ON, 1: DSP OFF) |
| 80H        |         | 01H       |                 | Return Band1 Tone Level Status followed by IC Read Address 0x81 (00H: -12dB - 18H: + 12dB)                                                                            |
| 80H        |         | 02H       |                 | Return Band2 Tone Level Status followed by IC Read Address 0x81                                                                                                       |
| 80H        |         | 03H       |                 | Return Band3 Tone Level Status followed by IC Read Address 0x81                                                                                                       |
| 80H        |         | 04H       |                 | Return Band4 Tone Level Status followed by IC Read Address 0x81                                                                                                       |

## 6.2 DESCRIPTION

- **Bypass Mode**
- **Format**

| Command Code (Hex) | Command Name |
|--------------------|--------------|
| 01                 | Bypass       |

- **Description**

In bypass mode, DIN (PCM input data line) is directly connected to DOUT (PCM output data line) and the DSP is in stop mode.

- **VIP Mode**

- **Format**

| Command Code (Hex) | Command Name |
|--------------------|--------------|
| 02                 | VIP          |

- **Description**

This one byte command selects VIP mode.

- **Equalizer Mode**

- **Format**

| Command Code (Hex) | Command Name |
|--------------------|--------------|
| 03                 | EQ           |

- **Description**

This one byte command selects Equalizer mode. Default tone levels are depicted in

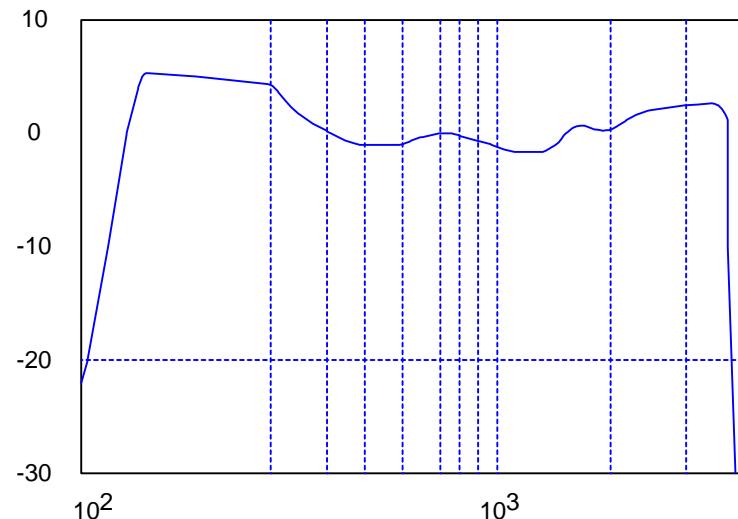



Figure 1: Default Tone Level (Band1: + 4dB, Band2: 0dB, Band3: 0dB, Band4: +1dB)

- VIP Level Select

• Format

| Command Code (Hex) | Data (Hex) | Command Name | Description |
|--------------------|------------|--------------|-------------|
| 09                 | 00         | VIP Level    | 100% (Max.) |
|                    | 01         |              | 80% (Mid.)  |
|                    | 02         |              | 60% (Min.)  |

• Description

When the current mode is the VIP, its level can be changed using incoming data byte after the command. The default VIP level is 80%.

### - EQ Mode Select

- Format

| Command Code (Hex) | Command Name | Description                                        |
|--------------------|--------------|----------------------------------------------------|
| 04                 | EQ Flat      | All Bands are set to 0dB                           |
| 05                 | EQ Mode1     | Band1: +3dB, Band2: -1dB, Band3: -1dB, Band4: +1dB |
| 06                 | EQ Mode2     | Band1: +3dB, Band2: 0dB, Band3: 0dB, Band4: +3dB   |
| 07                 | EQ Mode3     | Band1: +5dB, Band2: 0dB, Band3: 0dB, Band4: 0dB    |
| 08                 | EQ Mode4     | Band1: +5dB, Band2: 0dB, Band3: 0dB, Band4: +1dB   |

- Description

Although equalizer can control all four bands, it assigns five preset tone level modes.

### - EQ Tone Select

- Format

| Command Code (Hex) | Data  | Description | Command Name |
|--------------------|-------|-------------|--------------|
| 0A                 | [7:5] | 00          | Tone Control |
|                    |       | 01          |              |
|                    |       | 10          |              |
|                    |       | 11          |              |
|                    | [4:0] | 00000       |              |
|                    |       | +12dB       |              |
|                    |       | 00001       |              |
|                    |       | +11dB       |              |
|                    |       | ...         |              |
|                    |       | 01100       |              |

- Description

The equalizer controls four different frequency bands. The gain for each frequency band can be controlled between -12dB and +12dB. The [7:5] in data byte after the command determines the frequency band to be controlled and [4:0] determines gain level.

### - VIP Filter Gain Selection

- Format

| Command Code (Hex) | Data (Hex) |   | Description                  | Command Name            |
|--------------------|------------|---|------------------------------|-------------------------|
| 0B                 | [7:4]      | 0 | 150Hz Filter Gain to Servo   | VIP Filter Gain Control |
|                    |            | 1 | 300Hz Filter Gain to Servo   |                         |
|                    |            | 2 | 150Hz & 300 Hz Sum Gain      |                         |
|                    |            | 3 | 600Hz Filter Gain to Servo   |                         |
|                    |            | 4 | 1.2kHz Filter Gain to Summer |                         |
|                    |            | 5 | 1.2kHz Filter Gain to Servo  |                         |
|                    |            | 6 | 2.4kHz Filter Gain to Summer |                         |
|                    |            | 7 | 2.4kHz Filter Gain to Servo  |                         |
|                    |            | 8 | 4.8kHz Filter Gain to Summer |                         |
|                    |            | 9 | 4.8kHz Filter Gain to Servo  |                         |
|                    | [3:0]      | 0 | + 12dB                       |                         |
|                    |            | 1 | + 11dB                       |                         |
|                    |            |   | ...                          |                         |
|                    |            | C | 0dB                          |                         |

- Description

These commands select the gains of filter outputs in the VIP mode. The detailed description of filter structure can be found in "VIP specification" published by SRS Labs.

### - Noise Level Selection

- Format

| Command Code (Hex) | Data (Hex) | Description                             | Command Name       |
|--------------------|------------|-----------------------------------------|--------------------|
| 0D                 | 00 - FF    | Assume the value in data as noise level | Noise Level Select |

- Description

When the input from ADC has small noise, this noise can increase in VIP or EQ mode since the specific frequency levels are increased. To avoid this problem in mute, the input data is tested for 25ms. If the absolute values of input data are less than noise level specified in Data and stay for 25ms, then the input is considered as zeros and are processed. Default noise level is set to 0x1F.

### - Current Status

- Format

| Command Code (Hex) | Data (Hex) | Description                             | Command Name   |
|--------------------|------------|-----------------------------------------|----------------|
| 0E                 | 01         | Return current status register contents | Current Status |

- Description

It returns the contents of the current status register as:

Status [7:4] = unused

Status [3:2] = VIP Level (00: 100%, 01: 80%, 10: 60%)

Status [1] = Working Mode (0: VIP, 1:EQ)

Status [0] = DSP On/Off (0: DSP On, 1: DSP Off)

### - EQ Tone Level Status

- Format

| Command Code (Hex) | Data (Hex) | Description                     | Command Name              |
|--------------------|------------|---------------------------------|---------------------------|
| 0E                 | 02         | Return current band1 tone level | Current Tone Level Status |
|                    | 03         | Return current band2 tone level |                           |
|                    | 04         | Return current band3 tone level |                           |
|                    | 05         | Return current band4 tone level |                           |

- Description

These commands return the current tone levels in EQ mode. Returned byte value is between 0x00 (-12dB) and 0x18 (+12dB).

## 7. MEMORY SIZE AND REQUIRED MIPS

### 7.1 MEMORY SIZE

| Memory  |          | Size (word*) |
|---------|----------|--------------|
| Data    | Bank 0   | 256          |
|         | Bank 1   | 256          |
| Program | VIP      | 800          |
|         | 4band EQ | 500          |
|         | Test     | 400          |
|         | Others   | 100          |
|         | Total    | 1860         |

\* word = 16 bit

### 7.2 MIPS

| Routines                                          | No. of Cycles | MIPS | Remark                       |
|---------------------------------------------------|---------------|------|------------------------------|
| VIP                                               | 650           | 5.2  | -                            |
| 4band EQ                                          | 400           | 3.2  | Working only when VIP is OFF |
| Others                                            | 80            | 0.64 | -                            |
| Total (VIP ON) = $650 + 70 + 80 = 800$ (6.4 MIPS) |               |      |                              |

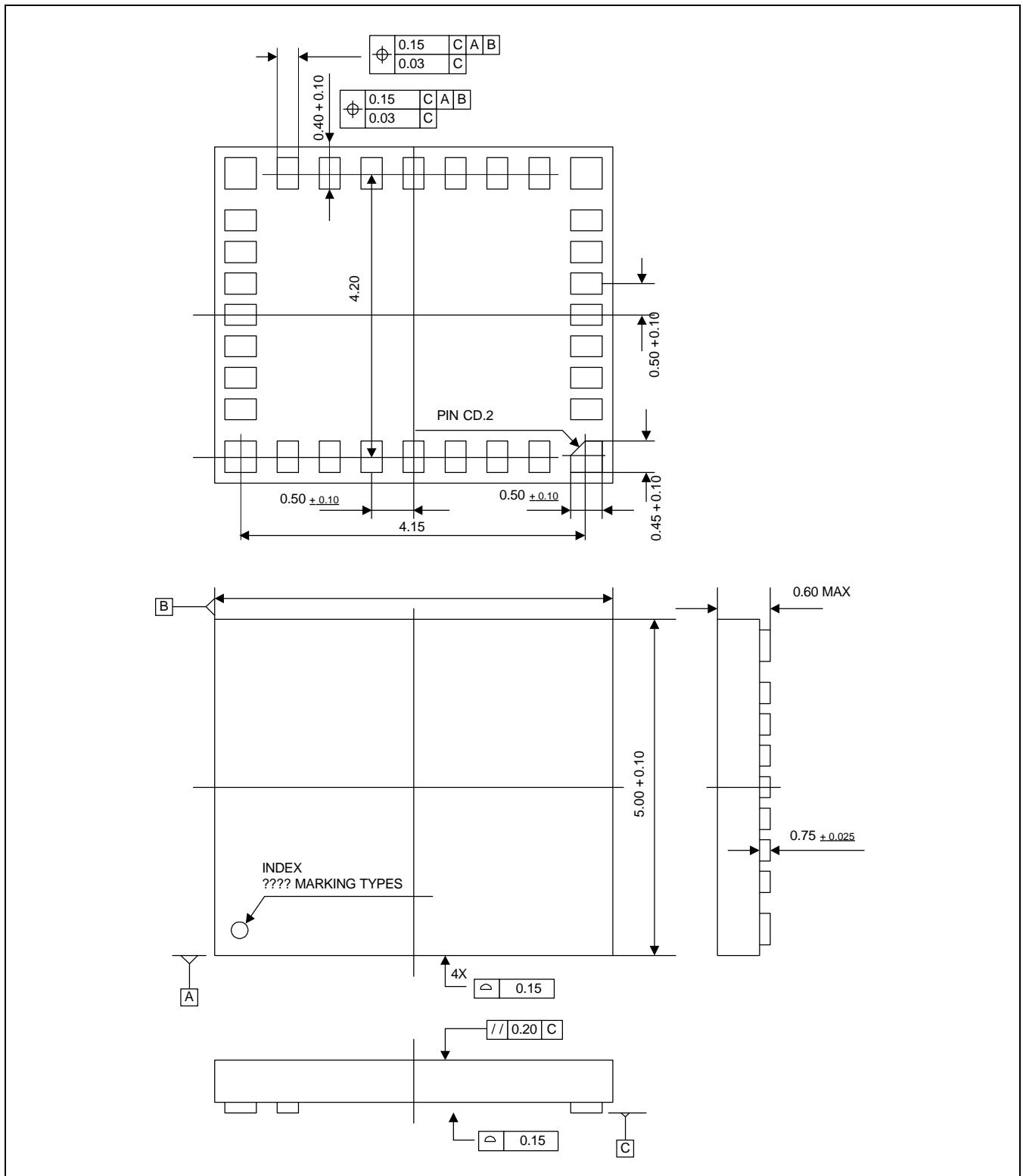
## 8. ELECTRICAL CHARACTERISTICS

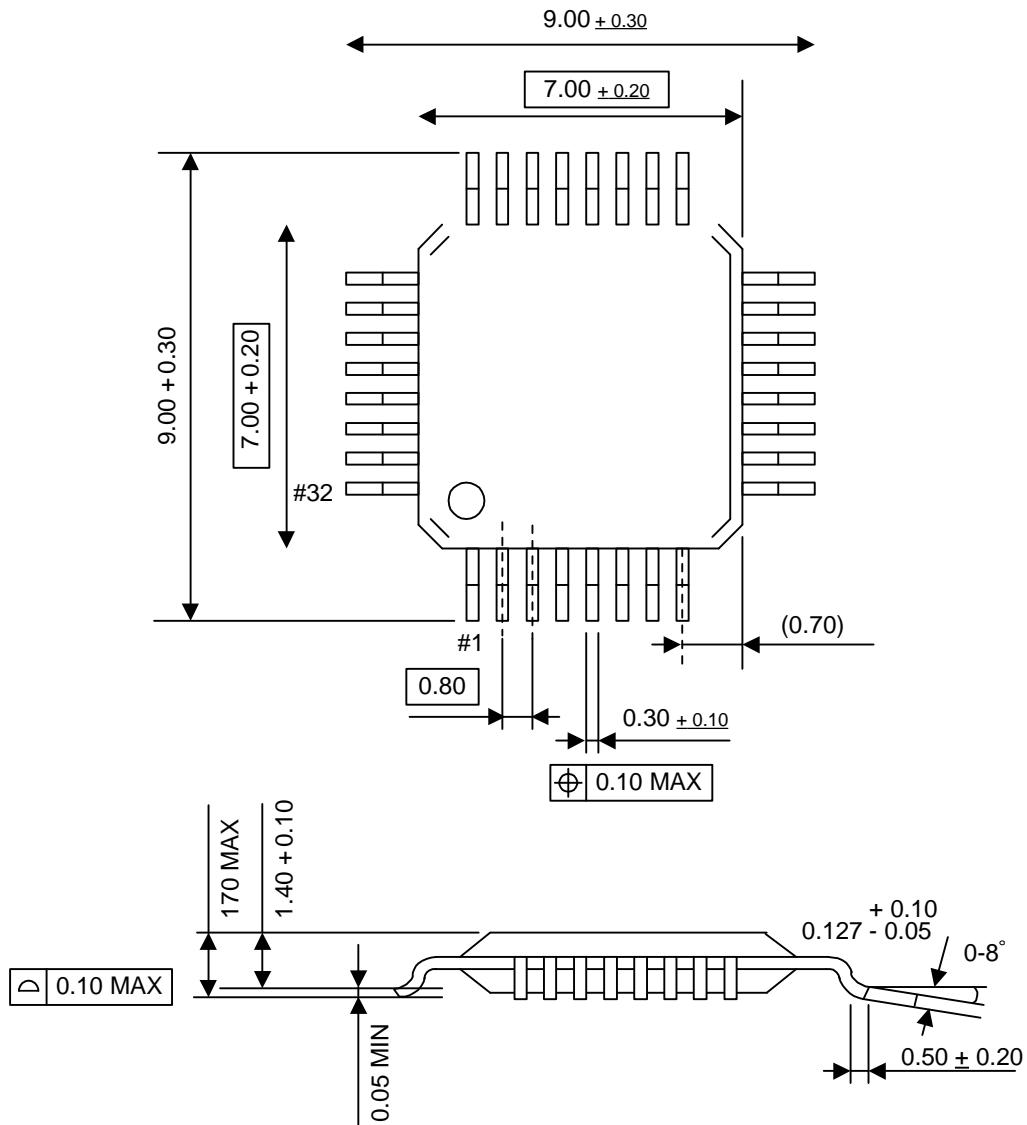
(Unless otherwise specified,  $V_{cc} = 2.7V$  to  $3.3V$ ,  $TA = -30^{\circ}C$  to  $85^{\circ}C$  ; typical characteristic are specified at  $V_{cc} = 3.0V$ ,  $TA = 25^{\circ}C$ ; all signals are referenced to GND)

### 8.1 DIGITAL INTERFACES

| Symbol | Parameter                                    | Test Condition                 | Min.          | Typ. | Max. | Unit |
|--------|----------------------------------------------|--------------------------------|---------------|------|------|------|
| VIL    | Input Low Voltage                            |                                | 0.8           |      |      | V    |
| VIH    | Input High Voltage                           |                                |               |      | 1.9  | V    |
| VOL    | Output Low Voltage                           | $I_{OL} = 1\mu A$              |               |      | 0.05 | V    |
|        |                                              | $I_{OL} = 4mA$ (see Note1)     |               |      | 0.4  | V    |
|        |                                              | $I_{OL} = 8mA$ (see Note 2)    |               |      |      |      |
| VOH    | Output High Voltage                          | $I_{OH} = -1\mu A$             | $V_{DD}-0.05$ |      |      | V    |
|        |                                              | $I_{OH} = -4mA$ (see Note1)    | 2.4           |      |      | V    |
|        |                                              | $I_{OH} = -8mA$ (see Note2)    |               |      |      |      |
| IIL    | Input Low Current                            | $V_{IN} = V_{ss}$              | -10           |      | 10   | uA   |
|        |                                              | $V_{IN} = V_{ss}$ (see Note3)  | -60           | -30  | -10  | uA   |
| IIH    | Input High Current                           | $V_{IN} = V_{DD}$              | -10           |      | 10   | uA   |
|        |                                              | $V_{IN} = V_{DD}$ (see Note4)  | 60            | 30   | 10   | uA   |
| IOZ    | Output Current in High impedance (Tri-state) | $V_{OUT} = V_{ss}$ or $V_{DD}$ | -5            |      | 5    | uA   |

#### NOTES:


1. Normal Output Pin
2. SDA ,SCL Output Pin
3. Input Buffer with pull -up (3, 4, 5, 6, 8 Pin)
4. Input Buffer with pull -down (17, 19, 20, 21, 23, 24, 25 Pin)


### 8.2 POWER DISSIPATION (@3.3V)

| Symbol | Parameter         | Test Condition            | Min. | Typ. | Max. | Unit |
|--------|-------------------|---------------------------|------|------|------|------|
| ICC0   | Operation Current | VIP or EQ Operation Mode  | -    | 3    | 4    | mA   |
| ICC1   | Bypass Current    | Bypass Operation Mode     | -    | 100  | 150  | uA   |
| ICC2   | Static Current    | No Operation (Sleep Mode) | -    | 10   |      | uA   |

## 9. PACKAGE DIMENSION

## 9.1 32 BCC TYPE



