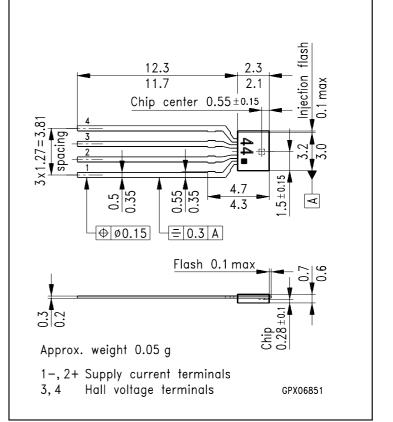
SIEMENS

Hall Sensor


Preliminary Data

Features

- High sensitivity
- High operating temperature
- Small linearity error
- Low offset voltage
- Low TC of sensitivity
- Specified TC of offset voltage
- Low inductive zero component
- Package thickness 0.7 mm
- Connections from one side of the package

Typical Applications

- Current and power measurement
- Magnetic field measurement
- Control of brushless DC motors Rotation and position sensing
- Measurement of diaphragm
- Movement for pressure sensing

Dimensions in mm

Туре	Marking	Ordering Code
KSY 44	44	Q62705-K265

The KSY 44 is a MOVPE¹⁾ Hall sensor in a mono-crystalline GaAs material, built into an extremely flat plastic package (SOH). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe.

1) Metal Organic Vapour Phase Epitaxy

Maximum Ratings

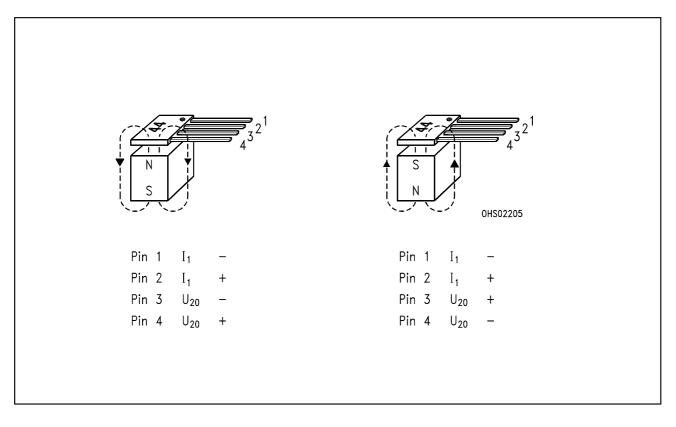
Parameter	Symbol	Value	Unit
Operating temperature	T _A	- 40+ 175	°C
Storage temperature	T _{stg}	- 50+ 180	°C
Supply current	<i>I</i> ₁	10	mA
Thermal conductivity soldered, in air	$G_{ ext{thA}} \ G_{ ext{thC}}$	≥ 1.5 ≥ 2.2	mW/K mW/K

Characteristics (T_A = 25 °C)

Nominal supply current	I _{1N}	7	mA
Open-circuit sensitivity	K _{B0}	150265	V/AT
Open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1 \text{ T}$	V ₂₀	105185	mV
Ohmic offset voltage $I_1 = I_{1N}, B = 0$ T	V _{R0}	≤± 15	mV
Linearity of Hall voltage B = 00.5 T B = 01.0 T	FL	$\leq \pm 0.2$ $\leq \pm 0.7$	% %
Input resistance $B = 0$ T	<i>R</i> ₁₀	600900	Ω
Output resistance $B = 0$ T	R ₂₀	10001500	Ω
Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1$ T	TC _{V20}	~ - 0.03	%/K
Temperature coefficient of the internal resistance, $B = 0$ T	<i>TC</i> _{R10, R20}	~ + 0.3	%/K
Temperature coefficient of ohmic offset voltage, $I_1 = I_{1N}$, $B = 0$ T	t TC _{VR0}	~ - 0.3	%/K
Inductive zero component, $I_{1N} = 0$	$A_2^{(1)}$	0.16	cm ²
Switch-on drift of the ohmic offset voltage $I_1 = I_{1N}$, $B = 0$ T	$\frac{dV_0^{2)}}{\Delta V_0^{3)}}$	≤ 0.3 ≤ 0.1	mV mV
Noise figure	F	~ 10	dB

1) With time varying induction there exists an inductive voltage V_{ind} between the Hall voltage terminals (supply current $I_1 = 0$):

$$V_{\text{ind}} = A_2 \times dB/dt \times 10^{-4} \text{ with } V(\text{V}), A_2 \text{ (cm}^2), B(\text{T}), t(\text{s})$$


2)
$$dV_0 = |V_0(t = 1s) - V_0(t = 0.1 s)|$$

3)
$$\Delta V_0 = |V_0(t = 3m) - V_0(t = 1 \text{ s})|$$

Connection of a Hall Sensor with a Power Source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source, in order to avoid damage to the Hall sensor due to power peaks.

Polarity of Hall Voltage

