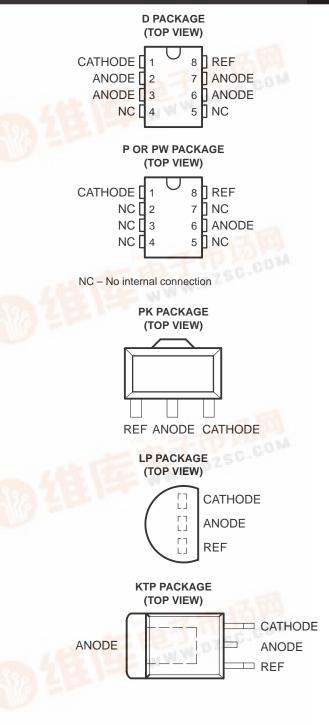
查询TL431CKTPR供应商

捷多邦,专业PCB打样工厂,24小时加急**已统**31,TL431A ADJUSTABLE PRECISION SHUNT REGULATORS


SLVS005J - JULY 1978 - REVISED JULY 1999

- Equivalent Full-Range Temperature Coefficient . . . 30 ppm/°C
- 0.2-Ω Typical Output Impedance
- Sink-Current Capability . . . 1 mA to 100 mA
- Low Output Noise
- Adjustable Output Voltage . . . V_{ref} to 36 V
- Available in a Wide Range of High-Density Packages

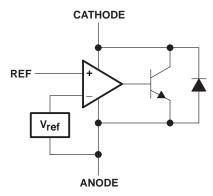
description

The TL431 and TL431A are three-terminal adjustable shunt regulators with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between V_{ref} (approximately 2.5 V) and 36 V with two external resistors (see Figure 17). These devices have a typical output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as onboard regulation, adjustable power supplies, and switching power supplies.

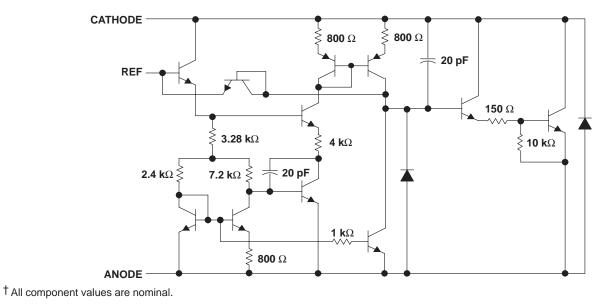
The TL431C and TL431AC are characterized for operation from 0°C to 70°C, and the TL431I and TL431AI are characterized for operation from -40°C to 85°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS005J – JULY 1978 – REVISED JULY 1999


AVAILABLE OPTIONS									
			PACKAGED	DEVICES					
TA	SMALL OUTLINE (D)	PLASTIC FLANGE MOUNT (KTP)	TO-226AA (LP)	PLASTIC DIP (P)	SOT-89 (PK)	SHRINK SMALL OUTLINE (PW)	CHIP FORM (Y)		
0°C to 70°C	TL431CD TL431ACD	TL431CKTPR	TL431CLP TL431ACLP	TL431CP TL431ACP	TL431CPK	TL431CPW	TL431Y		
–40°C to 85°C	TL431ID TL431AID		TL431ILP TL431AILP	TL431IP TL431AIP	TL431IPK		164311		

The D and LP packages are available taped and reeled. The KTP and PK packages are only available taped and reeled. Add the suffix R to device type (e.g., TL431CDR). Chip forms are tested at $T_A = 25^{\circ}C$.


symbol

functional block diagram

equivalent schematic[†]

SLVS005J - JULY 1978 - REVISED JULY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Cathode voltage, V_{KA} (see Note 1) Continuous cathode current range, I_{KA} Reference input current range Package thermal impedance, θ_{JA} (see Notes 2 and 3): Lead temperature 1,6 mm (1/16 inch) from case for 10 Lead temperature 1,6 mm (1/16 inch) from case for 60	D package LP package KTP package P package PK package PW package PW package seconds: D, P, or PW package seconds: LP or PK package	$\begin{array}{c} -100 \text{ mA to } 150 \text{ mA} \\ \dots -50 \ \mu\text{A to } 10 \text{ mA} \\ \dots 97^\circ\text{C/W} \\ \dots 156^\circ\text{C/W} \\ \dots 28^\circ\text{C/W} \\ \dots 127^\circ\text{C/W} \\ \dots 52^\circ\text{C/W} \\ \dots 149^\circ\text{C/W} \\ \dots 260^\circ\text{C} \\ \dots 300^\circ\text{C} \end{array}$
Storage temperature range, T _{stg}		

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

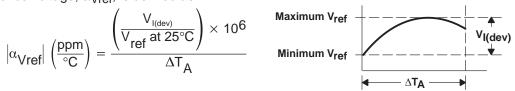
NOTES: 1. Voltage values are with respect to the anode terminal unless otherwise noted.

2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can impact reliability.

3. The package thermal impedance is calculated in accordance with JESD 51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions

		MIN	MAX	UNIT
Cathode voltage, V _{KA}		Vref	36	V
Cathode current, IKA		1	100	mA
	TL431C, TL431AC	0	70	°C
Operating free-air temperature range, T _A	TL431I, TL431AI	-40	85	C


SLVS005J - JULY 1978 - REVISED JULY 1999

electrical characteristics over recommended operating conditions, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST TEST CONDITIONS		TL431C			UNIT
		CIRCUIT			MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	I _{KA} = 10 mA	2440	2495	2550	mV
V _{I(dev)}	Deviation of reference voltage over full temperature range (see Figure 1)	2	V _{KA} = V _{ref} , I _{KA} = T _A = full range [†]	= 10 mA,		4	25	mV
ΔV_{ref}	Ratio of change in reference voltage	3	h 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
$\overline{\Delta V_{KA}}$	to the change in cathode voltage	3	I _{KA} = 10 mA	ΔV _{KA} = 36 V – 10 V		-1	-2	$\frac{mV}{V}$
Iref	Reference current	3	I _{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞			2	4	μA
I _{I(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{KA} = 10 \text{ mA}, \text{ R1} = 10 \text{ k}\Omega, \text{ R2} = \infty,$ T _A = full range [†]			0.4	1.2	μA
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	1	mA
loff	Off-state cathode current	4	V _{KA} = 36 V,	$V_{ref} = 0$		0.1	1	μA
zka	Dynamic impedance (see Figure 1)	1	$I_{KA} = 1 \text{ mA to } 100 \text{ f} \le 1 \text{ kHz}$	$V mA, V_{KA} = V_{ref},$		0.2	0.5	Ω

[†] Full range is 0°C to 70°C for the TL431C.

The deviation parameters $V_{ref(dev)}$ and $I_{ref(dev)}$ are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, α_{Vref} , is defined as:

where:

 ΔT_A is the recommended operating free-air temperature range of the device.

avref can be positive or negative, depending on whether minimum Vref or maximum Vref, respectively, occurs at the lower temperature.

Example: maximum V_{ref} = 2496 mV at 30°C, minimum V_{ref} = 2492 mV at 0°C, V_{ref} = 2495 mV at 25°C, $\Delta T_A = 70^{\circ}C$ for TL431C

$$\left|\alpha_{Vref}\right| = \frac{\left(\frac{4 \text{ mV}}{2495 \text{ mV}}\right) \times 10^{6}}{70^{\circ}\text{C}} \approx 23 \text{ ppm/}^{\circ}\text{C}$$

Because minimum V_{ref} occurs at the lower temperature, the coefficient is positive.

Calculating Dynamic Impedance The dynamic impedance is defined as: $|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by:

$$|z'| = \frac{\Delta V}{\Delta I} \approx \left| z_{\text{KA}} \right| \left(1 + \frac{\text{R1}}{\text{R2}} \right)$$

Figure 1. Calculating Deviation Parameters and Dynamic Impedance

SLVS005J - JULY 1978 - REVISED JULY 1999

electrical characteristics over recommended operating conditions, T_{A} = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST TEST CONDITIONS		TL431I			UNIT
		CIRCUIT			MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	I _{KA} = 10 mA	2440	2495	2550	mV
V _{I(dev)}	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{ref, IKA} = T_A = full rangeT$	10 mA,		5	50	mV
ΔV_{ref}	Ratio of change in reference voltage	3	h 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
$\overline{\Delta V_{KA}}$	to the change in cathode voltage	3	I _{KA} = 10 mA	ΔV _{KA} = 36 V – 10 V		-1	-2	V
I _{ref}	Reference current	3	I _{KA} = 10 mA, R1 =	= 10 kΩ, R2 = ∞		2	4	μA
l _{l(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	I_{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞, T _A = full range [†]			0.8	2.5	μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	1	mA
loff	Off-state cathode current	4	V _{KA} = 36 V,	V _{ref} = 0		0.1	1	μA
zka	Dynamic impedance (see Figure 1)	2	$I_{KA} = 1 \text{ mA to } 100 \text{ f} \le 1 \text{ kHz}$	mA, $V_{KA} = V_{ref}$,		0.2	0.5	Ω

[†] Full range is –40°C to 85°C for the TL431I.

electrical characteristics over recommended operating conditions, T_{A} = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST TEST CONDITIONS		TL431AC			UNIT
		CIRCUIT			MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	V _{KA} = V _{ref} ,	I _{KA} = 10 mA	2470	2495	2520	mV
V _{I(dev)}	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{ref}$, $I_{KA} = T_A = full rangeT$	10 mA,		4	25	mV
ΔV_{ref}	Ratio of change in reference voltage	3	h = 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
$\overline{\Delta V_{KA}}$	to the change in cathode voltage	3	I _{KA} = 10 mA	$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-1	-2	V
Iref	Reference current	3	I _{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞			2	4	μΑ
I _{I(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	I _{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞, T _A = full range [‡]			0.8	1.2	μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	0.6	mA
loff	Off-state cathode current	4	V _{KA} = 36 V,	V _{ref} = 0		0.1	0.5	μA
z _{KA}	Dynamic impedance (see Figure 1)	1	$I_{KA} = 1 \text{ mA to } 100 \text{ f} \le 1 \text{ kHz}$	mA, $V_{KA} = V_{ref}$,		0.2	0.5	Ω

[‡]Full range is 0°C to 70°C for the TL431AC.

SLVS005J - JULY 1978 - REVISED JULY 1999

electrical characteristics over recommended operating conditions, T_{A} = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST TEST CONDITIONS		TL431AI			UNIT
		CIRCUIT			MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	I _{KA} = 10 mA	2470	2495	2520	mV
V _{I(dev)}	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{ref}$, $I_{KA} = T_A = full rangeT$	10 mA,		5	50	mV
ΔV_{ref}	Ratio of change in reference voltage	3	h 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
$\overline{\Delta V_{KA}}$	to the change in cathode voltage	3	I _{KA} = 10 mA	$\Delta V_{KA} = 36 V - 10 V$		-1	-2	mV V
Iref	Reference current	3	I _{KA} = 10 mA, R1 =	= 10 kΩ, R2 = ∞		2	4	μΑ
II(dev)	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{KA} = 10 \text{ mA}, \text{ R1} = 10 \text{ k}\Omega, \text{ R2} = \infty,$ T _A = full range [†]			0.8	2.5	μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	0.7	mA
loff	Off-state cathode current	4	V _{KA} = 36 V,	V _{ref} = 0		0.1	0.5	μΑ
zka	Dynamic impedance (see Figure 1)	2	$I_{KA} = 1 \text{ mA to } 100 \text{ f} \le 1 \text{ kHz}$	mA, $V_{KA} = V_{ref}$,		0.2	0.5	Ω

[†] Full range is –40°C to 85°C for the TL431AI.

electrical characteristics over recommended operating conditions, T_{A} = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST TEST CONDITIONS		TL431Y			UNIT
	PARAMETER				MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	I _{KA} = 10 mA		2495		mV
ΔV_{ref}	Ratio of change in reference voltage	3	I _{KA} = 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4		mV
$\frac{\Delta V_{\text{ref}}}{\Delta V_{\text{KA}}}$	to the change in cathode voltage	5	IKA = 10 IIIA	$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-1		$\frac{mV}{V}$
Iref	Reference input current	3	I _{KA} = 10 mA, R1 = 10 kΩ, R2 = ∞			2		μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4		mA
loff	Off-state cathode current	4	V _{KA} = 36 V,	$V_{ref} = 0$		0.1		μΑ
z _{KA}	Dynamic impedance‡	2	$I_{KA} = 1 \text{ mA to } 100 \text{ f} \le 1 \text{ kHz}$	mA, $V_{KA} = V_{ref}$,		0.2		Ω

[‡]Calculating dynamic impedance:

The dynamic impedance is defined as: $|z_{KA}| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by:

$$|z'| = \frac{\Delta V}{\Delta I} \approx |z_{KA}| \left(1 + \frac{R1}{R2}\right)$$

SLVS005J - JULY 1978 - REVISED JULY 1999

PARAMETER MEASUREMENT INFORMATION

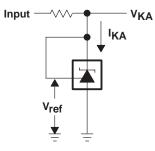


Figure 2. Test Circuit for $V_{KA} = V_{ref}$

Figure 3. Test Circuit for V_{KA} > V_{ref}

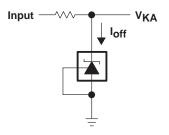


Figure 4. Test Circuit for Ioff

SLVS005J – JULY 1978 – REVISED JULY 1999

TYPICAL CHARACTERISTICS

Table 1. Graphs

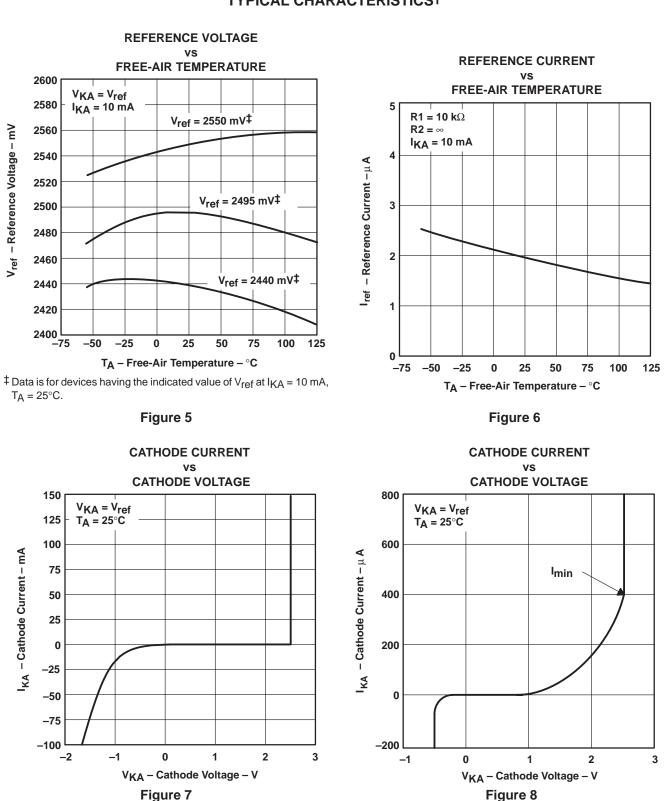
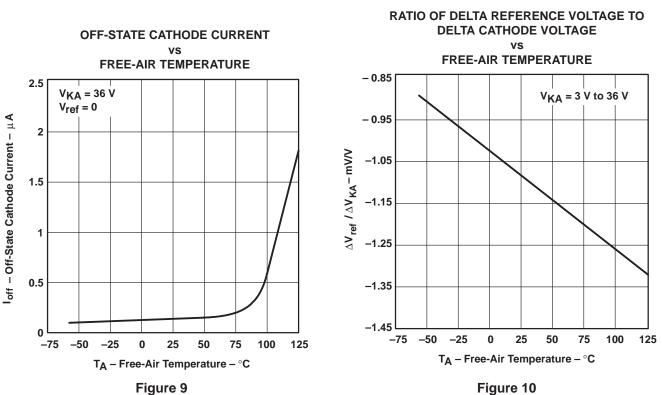

	FIGURE
Reference input voltage vs Free-air temperature	5
Reference input current vs Free-air temperature	6
Cathode current vs Cathode voltage	7, 8
Off-state cathode current vs Free-air temperature	9
Ratio of delta reference voltage to change in cathode voltage vs Free-air temperature	10
Equivalent input noise voltage vs Frequency	11
Equivalent input noise voltage over a 10-second period	12
Small-signal voltage amplification vs Frequency	13
Reference impedance vs Frequency	14
Pulse response	15
Stability boundary conditions	16

Table 2. Application Circuits

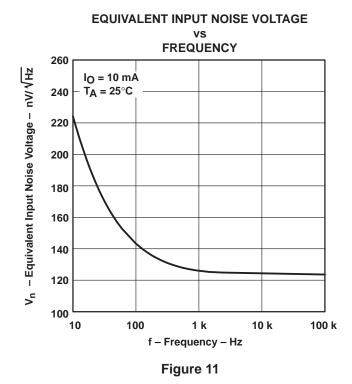
	FIGURE
Shunt regulator	17
Single-supply comparator with temperature-compensated threshold	18
Precision high-current series regulator	19
Output control of a three-terminal fixed regulator	20
High-current shunt regulator	21
Crowbar circuit	22
Precision 5-V 1.5-A regulator	23
Efficient 5-V precision regulator	24
PWM converter with reference	25
Voltage monitor	26
Delay timer	27
Precision current limiter	28
Precision constant-current sink	29

SLVS005J - JULY 1978 - REVISED JULY 1999



TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.


SLVS005J - JULY 1978 - REVISED JULY 1999

TYPICAL CHARACTERISTICS[†]

Figure 10

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

SLVS005J - JULY 1978 - REVISED JULY 1999

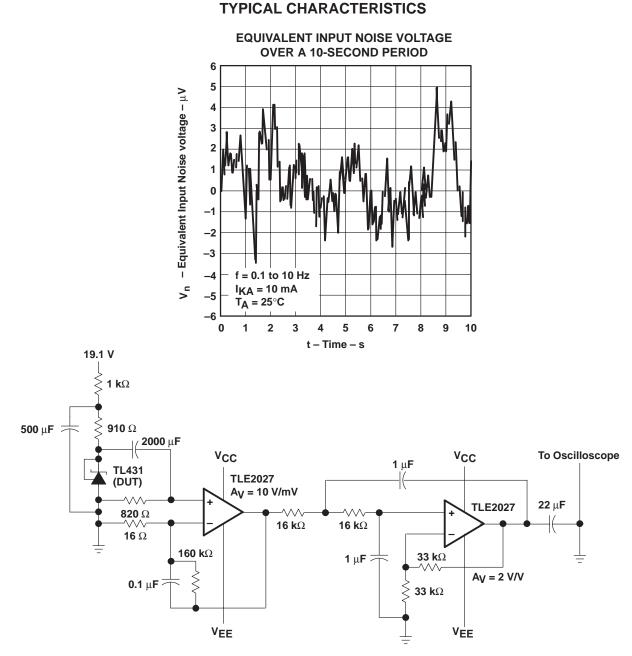
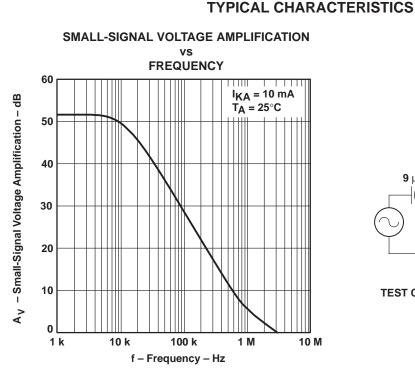
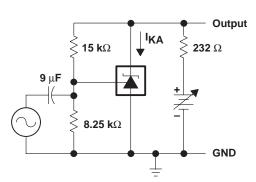
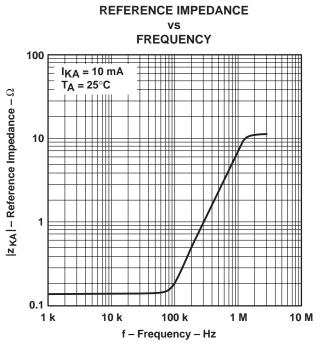
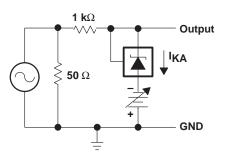




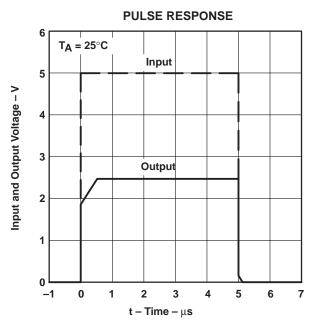
Figure 12. Test Circuit for Equivalent Input Noise Voltage

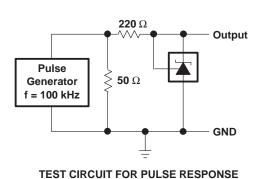

SLVS005J - JULY 1978 - REVISED JULY 1999

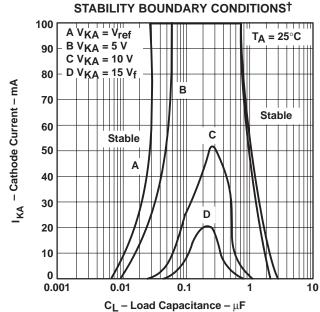


TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

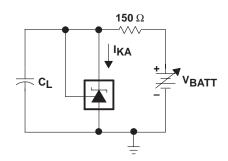
TEST CIRCUIT FOR REFERENCE IMPEDANCE

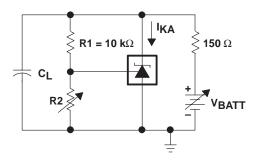





SLVS005J - JULY 1978 - REVISED JULY 1999







TEST CIRCUIT FOR CURVE A

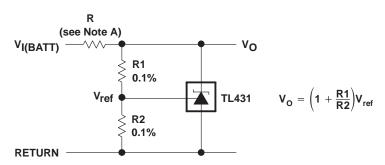
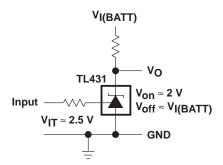
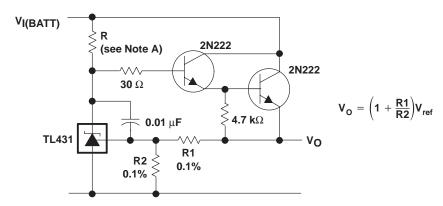

TEST CIRCUIT FOR CURVES B, C, AND D

Figure 16


SLVS005J - JULY 1978 - REVISED JULY 1999

APPLICATION INFORMATION



NOTE A: R should provide cathode current \geq 1 mA to the TL431 at minimum V_{I(BATT)}.

SLVS005J - JULY 1978 - REVISED JULY 1999

APPLICATION INFORMATION

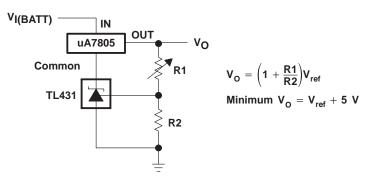


Figure 20. Output Control of a Three-Terminal Fixed Regulator

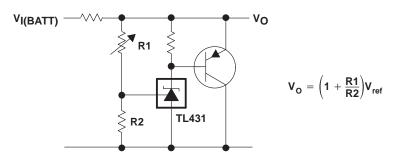
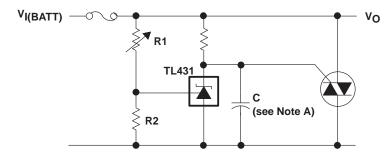



Figure 21. High-Current Shunt Regulator

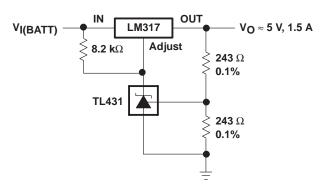
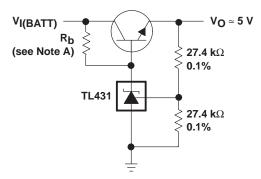

NOTE A: Refer to the stability boundary conditions in Figure 16 to determine allowable values for C.

Figure 22. Crowbar Circuit



SLVS005J - JULY 1978 - REVISED JULY 1999

APPLICATION INFORMATION

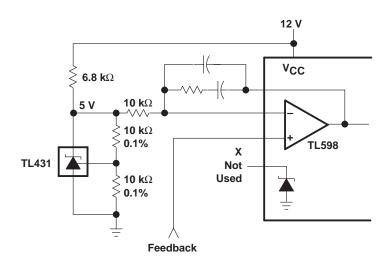
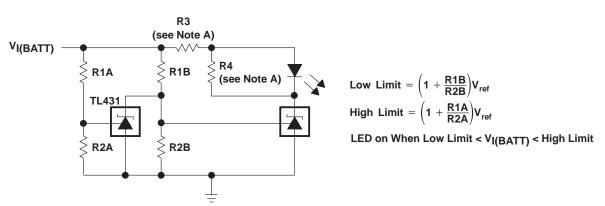



Figure 25. PWM Converter With Reference

SLVS005J - JULY 1978 - REVISED JULY 1999

NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current \geq 1 mA to the TL431 at the available V_{I(BATT)}.

Figure 26. Voltage Monitor

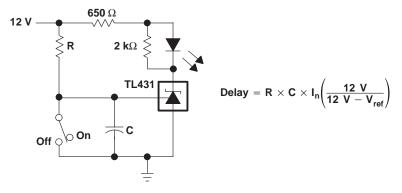


Figure 27. Delay Timer

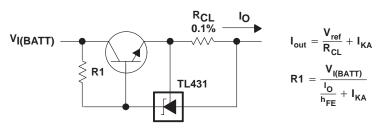
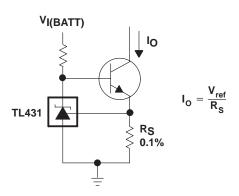



Figure 28. Precision Current Limiter

SLVS005J - JULY 1978 - REVISED JULY 1999

APPLICATION INFORMATION

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated