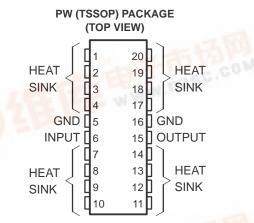
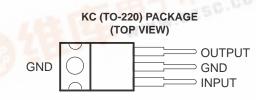
查询TLV2217-18KTPR供应商

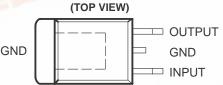

捷多邦,专业PCB打样工厂,24小时加急出货 TLV2217 LOW-DROPOUT FIXED-VOLTAGE REGULATORS

Internal Overcurrent Limiting

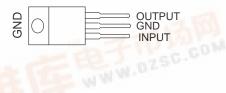

and Temperature

SLVS067K - MARCH 1992 - REVISED AUGUST 2004


- Fixed 1.8-V, 2.5-V, and 3.3-V Outputs
- ±1% Maximum Output Voltage Tolerance at T_J = 25°C
- 500-mV Maximum Dropout Voltage at 500 mA (3.3-V Option)


HEAT SINK – These terminals have an internal resistive connection to ground and should be grounded or electrically isolated.

description/ordering information



±2% Output Voltage Variation Across Load

*Complies with JEDEC TO-252, variation AC

KCS (TO-220) PACKAGE (TOP VIEW)

ORDERING INFORMATION								
Tj	V _O (NOM)	PACKAGET		ORDERABLE PART NUMBER	TOP-SIDE MARKING			
LOUT	1.8 V	PowerFLEX™/TO-252* (KTP)	Reel of 3000	TLV2217-18KTPR	2217–18			
BZELV	25V	TO-220 (KCS)	Tube of 50	TLV2217-18KCS	TLV2217-18			
1		TO-220 (KC)	Tube of 50	TLV2217-25KC	TLV2217-25			
		PowerFLEX™/TO-252* (KTP)	Reel of 3000	TLV2217-25KTPR	2217-25			
0°C to 125°C		TOOOD (DW)	Tube of 70	TLV2217-25PW	0017 05			
		TSSOP (PW)	Reel of 2000	TLV2217-25PWR	2217–25			
		PowerFLEX™/TO-252* (KTP)	Reel of 3000	TLV2217-33KTPR	2217–33			
	3.3 V	TO-220 (KC)	Tube of 50	TLV2217-33KC	TLV2217-33			
	1.00	TSSOP (PW)	Reel of 2000	TLV2217-33PWR	2217–33			

*Complies to TO-252, variation AC.

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

werFLEX is a trademark of Texas Instruments.

SLVS067K - MARCH 1992 - REVISED AUGUST 2004

description/ordering information (continued)

The TLV2217 family of low-dropout regulators offers a variety of fixed-voltage options that offer a maximum continuous input voltage of 16 V, making them more versatile than CMOS regulators. Utilizing a pnp pass element, these regulators are capable of sourcing 500 mA of current, with a specified maximum dropout of 500 mV (3.3-V and 2.5-V options), making these regulators ideal for low-voltage applications. Additionally, the TLV2217 regulators offer very tight output accuracy of $\pm 2\%$ across operating load and temperature ranges. Other convenient features the regulators provide are internal overcurrent limiting, thermal-overload protection, and overvoltage protection. The TLV2217 family of regulators is available in fixed voltages of 1.8 V, 2.5 V, and 3.3 V.

absolute maximum ratings over operating virtual junction temperature range (unless otherwise noted) $\!\!\!\!^\dagger$

Continuous input voltage, V _I	
Operating virtual junction temperature, T _J 150°C	
Storage temperature range, T _{stg}	
[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and	I

functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

package thermal data (see Note 1)

PACKAGE	BOARD	^θ JP*	θJC	θJA
PowerFLEX™/TO-252 (KTP)	High K, JESD 51-5	3°C/W		28°C/W
TO-220 (KC/KCS)	High K, JESD 51-5	3°C/W		19°C/W
TSSOP (PW)	High K, JESD 51-7		32°C/W	83°C/W

*For packages with exposed thermal pads, such as QFN, PowerPAD, and PowerFLEX, θ_{JP} is defined as the thermal resistance between the die junction and the bottom of the exposed pad.

NOTE 1: Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

recommended operating conditions

		MIN	MAX	UNIT
VI	Input voltage	3.0	12	V
IO	Output current	0	500	mA
Тј	Operating virtual junction temperature range	0	125	°C

[‡] Minimum V_I is equal to 3.0 V or V_O(max) + 0.6 V, whichever is greater.

SLVS067K - MARCH 1992 - REVISED AUGUST 2004

electrical characteristics at V_I = 4.5 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)

		TEAT ADVIDITIONAL			TLV2217-33		
PARAMETER		TEST CONDITIONS [†]		MIN TYP MAX			UNIT
Outrationality	00 m A to 500 m A		$T_J = 25^{\circ}C$	3.267	3.30	3.333	
Output voltage	$I_{O} = 20 \text{ mA to } 500 \text{ mA}, V_{I} = 3.8 \text{ V to } 5.5 \text{ V}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	3.234		3.366	V	
Input voltage regulation	V _I = 3.8 V to 5.5 V				5	15	mV
Ripple rejection	f = 120 Hz,	V _{ripple} = 1 V _{PP}	V _I = 4.5 V		-62		dB
Output voltage regulation	I_{O} = 20 mA to 500 mA	$I_{O} = 20 \text{ mA to } 500 \text{ mA}$				30	mV
Output noise voltage	f = 10 Hz to 100 kHz				500		μV
Descardantiana	I _O = 250 mA					400	
Dropout voltage	I _O = 500 mA					500	mV
Bias current	I _O = 0				2	5	mA
	I _O = 500 mA				19	49	ША

[†] Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 22-μF tantalum capacitor, with equivalent series resistance of 1.5 Ω, on the output.

electrical characteristics at V_I = 3.3 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)

DADAMETED				TLV2217-25				
PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT	
Output with an	1 00 m 4 to 500 m 4		$T_J = 25^{\circ}C$	2.475	2.5	2.525		
Output voltage	$I_{O} = 20 \text{ mA to } 500 \text{ mA}, V_{I} = 3.0 \text{ V to } 5.5 \text{ V}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	2.45		2.55	V		
Input voltage regulation	$V_{I} = 3.0 \text{ V to } 5.5 \text{ V}$				4	12	mV	
Ripple rejection	f = 120 Hz,	V _{ripple} = 1 V _{PP} ,	V _I = 4.5 V		-62		dB	
Output voltage regulation	I_{O} = 20 mA to 500 mA				4	23	mV	
Output noise voltage	f = 10 Hz to 100 kHz				500		μV	
Dranautuskana	I _O = 250 mA					400		
Dropout voltage	I _O = 500 mA					500	mV	
Bias current	I _O = 0				2	5	mA	
Dias current	I _O = 500 mA				19	49	ША	

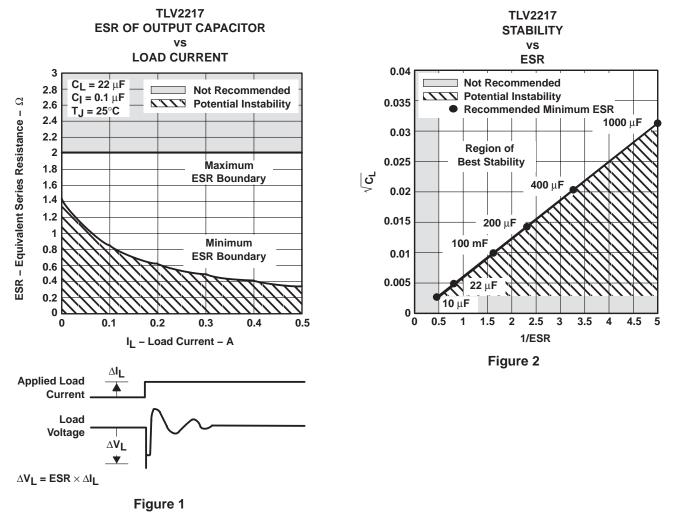
⁺ Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 22-μF tantalum capacitor, with equivalent series resistance of 1.5 Ω, on the output.

SLVS067K - MARCH 1992 - REVISED AUGUST 2004

electrical characteristics at V_I = 3.3 V, I_O = 500 mA, T_J = 25°C (unless otherwise noted)

				TLV2217-18				
PARAMETER		TEST CONDITIONS [†]		MIN	TYP	MAX	UNIT	
Output williams	1 00 m A (n 500 m A		$T_J = 25^{\circ}C$	1.782	1.8	1.818		
Output voltage	$I_{O} = 20 \text{ mA to } 500 \text{ mA}, V_{I} = 3.0 \text{ V to } 5.5 \text{ V}$	$T_J = 0^{\circ}C$ to $125^{\circ}C$	1.764		1.836	V		
Input voltage regulation	$V_{I} = 3.0 \text{ V} \text{ to } 5.5 \text{ V}$				3	9	mV	
Ripple rejection	f = 120 Hz,	V _{ripple} = 1 V _{PP} ,	V _I = 4.5 V		-62		dB	
Output voltage regulation	I_{O} = 20 mA to 500 mA	$I_{O} = 20 \text{ mA to } 500 \text{ mA}$					mV	
Output noise voltage	f = 10 Hz to 100 kHz		500		μV			
Descent settle set	IO = 250 mA				‡			
Dropout voltage	I _O = 500 mA				‡		mV	
Bias current	$I_{O} = 0$				2	5	mA	
	I _O = 500 mA				19	49	ША	

[†] Pulse-testing techniques are used to maintain the virtual junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately. All characteristics are measured with a 0.1-μF capacitor across the input and a 22-μF tantalum capacitor, with equivalent series resistance of 1.5 Ω, on the output.


[‡] Dropout voltage is limited by the input voltage range, with minimum V_I = 3.0 V.

SLVS067K - MARCH 1992 - REVISED AUGUST 2004

COMPENSATION-CAPACITOR SELECTION INFORMATION

The TLV2217 is a low-dropout regulator. This means that the capacitance loading is important to the performance of the regulator because it is a vital part of the control loop. The capacitor value and the equivalent series resistance (ESR) both affect the control loop and must be defined for the load range and the temperature range. Figures 1 and 2 can be used to establish the capacitance value and ESR range for the best regulator performance.

typical application schematic

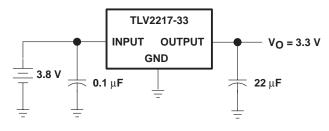


Figure 3

PACKAGE OPTION ADDENDUM

11-Apr-2005

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLV2217-18KCS	ACTIVE	TO-220	KCS	3	50	TBD	Call TI	Level-NC-NC-NC
TLV2217-18KTPR	ACTIVE	PFM	KTP	2	3000	TBD	Call TI	Level-1-220C-UNLIM
TLV2217-25KC	ACTIVE	TO-220	KC	3	50	TBD	Call TI	Level-1-220C-UNLIM
TLV2217-25KTPR	ACTIVE	PFM	KTP	2	3000	TBD	Call TI	Level-1-220C-UNLIM
TLV2217-25PW	ACTIVE	TSSOP	PW	20	70	Pb-Free (RoHS)	CU NIPD	Level-1-250C-UNLIM
TLV2217-25PWR	ACTIVE	TSSOP	PW	20	2000	Pb-Free (RoHS)	CU NIPD	Level-1-250C-UNLIM
TLV2217-33KC	ACTIVE	TO-220	KC	3	50	TBD	Call TI	Level-1-220C-UNLIM
TLV2217-33KTPR	ACTIVE	PFM	KTP	2	3000	TBD	Call TI	Level-1-220C-UNLIM
TLV2217-33PWR	ACTIVE	TSSOP	PW	20	2000	Pb-Free (RoHS)	CU NIPDAU	Level-1-250C-UNLIM
TLV2217-33PWRG4	ACTIVE	TSSOP	PW	20		Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

MECHANICAL DATA

MPSF001F - JANUARY 1996 - REVISED JANUARY 2002

0.047 (1,19)

0.037 (0,94)

4073388/M 01/02

2°−6°

Gage Plane

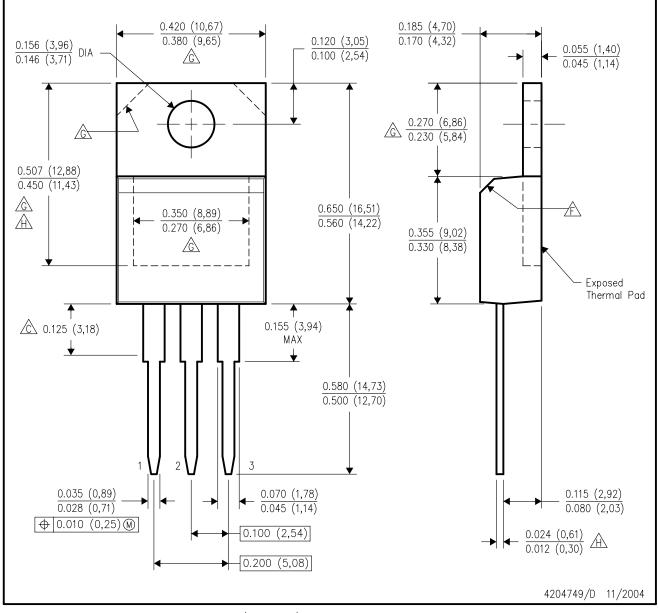
0.010 (0,25)

PowerFLEX™ PLASTIC FLANGE-MOUNT PACKAGE

0.080 (2,03) 0.243 (6,17) 0.070 (1,78) 0.233 (5,91) 0.228 (5,79) 0.050 (1,27) 0.218 (5,54) 0.040 (1,02) 0.130 (3,30) NOM 0.010 (0,25) NOM Thermal Tab (See Note C) 0.215 (5,46) 0.287 (7,29) NOM 0.247 (6,27) 0.277 (7,03) 0.237 (6,02) 0.381 (9,68) 0.371 (9,42) 0.100 (2,54) 0.090 (2,29) 0.032 (0,81) MAX Seating Plane ☐ 0.004 (0,10) 0.090 (2,29) 0.005 (0,13) 0.031 (0,79) 0.001 (0,02) 0.025 (0,63) 0.180 (4,57) ⊕ 0.010 (0,25) M

NOTES: A. All linear dimensions are in inches (millimeters).

KTP (R-PSFM-G2)


- B. This drawing is subject to change without notice.
- C. The center lead is in electrical contact with the thermal tab.
- D. Dimensions do not include mold protrusions, not to exceed 0.006 (0,15).
- E. Falls within JEDEC TO-252 variation AC.

PowerFLEX is a trademark of Texas Instruments.

KCS (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

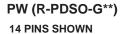

NOTES:

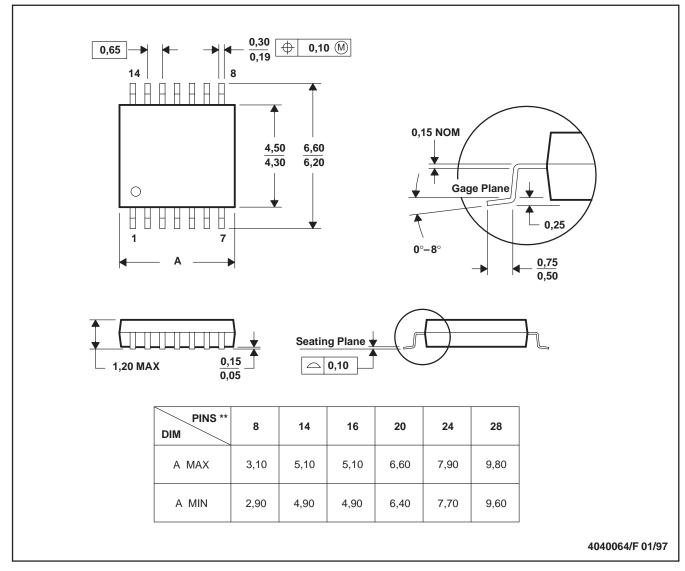
- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- \bigtriangleup Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- \frown The chamfer is optional.
- Thermal pad contour optional within these dimensions.
- m /h Falls within JEDEC TO-220 variation AB, except minimum lead thickness and minimum exposed pad length.

KC (R-PSFM-T3)

PLASTIC FLANGE-MOUNT PACKAGE

NOTES:


- Α. All linear dimensions are in inches (millimeters). Β.
- This drawing is subject to change without notice.
- Lead dimensions are not controlled within this area.
- D. All lead dimensions apply before solder dip.
- E. The center lead is in electrical contact with the mounting tab.
- 🖄 The chamfer is optional.
- G Thermal pad contour optional within these dimensions.
- \mathbb{A} Falls within JEDEC TO-220 variation AB, except minimum lead thickness.



MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated