May 2002 # ISL9K8120P3 ### 8A, 1200V Stealth™ Dual Diode ### **General Description** The ISL9K8120P3 is a Stealth™ dual diode optimized for low loss performance in high frequency hard switched applications. The Stealth™ family exhibits low reverse recovery current (I_{RM(REC)}) and exceptionally soft recovery under typical operating conditions. This device is intended for use as a free wheeling or boost diode in power supplies and other power switching applications. The low $I_{RM(REC)}$ and short t_a phase reduce loss in switching transistors. The soft recovery minimizes ringing, expanding the range of conditions under which the diode may be operated without the use of additional snubber circuitry. Consider using the Stealth $^{\text{TM}}$ diode with a 1200V NPT IGBT to provide the most efficient and highest power density design at lower cost. Formerly developmental type TA49413. ### **Features** | • | Soft Recovery $t_b / t_a > 5$ | .5 | |---|-------------------------------|----| | • | Fast Recovery $t_{rr} < 32$ | ns | | • | Operating Temperature | C | | • | Reverse Voltage 1200 | W | Avalanche Energy Rated ### **Applications** - Switch Mode Power Supplies - Hard Switched PFC Boost Diode - UPS Free Wheeling Diode - Motor Drive FWD - SMPS FWD - · Snubber Diode ## Package #### JEDEC TO-220AB ## Symbol ## Device Maximum Ratings (per leg) T_C = 25°C unless otherwise noted | Symbol | Parameter | Ratings | Units | |-----------------------------------|--|------------|--------| | V _{RRM} | Repetitive Peak Reverse Voltage | 1200 | V | | V _{RWM} | Working Peak Reverse Voltage | 1200 | V | | V _R | DC Blocking Voltage | 1200 | V | | I _{F(AV)} | I _{F(AV)} Average Rectified Forward Current (T _C = 105°C) Total Device Current (Both Legs) | | A
A | | I _{FRM} | Repetitive Peak Surge Current (20kHz Square Wave) | 16 | А | | I _{FSM} | Nonrepetitive Peak Surge Current (Halfwave 1 Phase 60Hz) | 100 | А | | P _D | P _D Power Dissipation E _{AVL} Avalanche Energy (1A, 40mH) | | W | | E _{AVL} | | | mJ | | T _J , T _{STG} | Operating and Storage Temperature Range | -55 to 150 | °C | | T _L | Maximum Temperature for Soldering | | | | T_{PKG}^{-} | Leads at 0.063in (1.6mm) from Case for 10s | 300 | °C | | | Package Body for 10s, See Application Note AN-7528 | 260 | °C | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. dzsc.com | Device | Marking | Device | Package | Tape Width | 1 | | Quan | itity | |----------------------|---|---|--|-------------------------|-----|-----|-------|-------| | K81 | 20P3 | ISL9K8120P3 | TO-220AB | N/A | | | 50 | | | Electric | al Char | acteristics (per le | g) T _C = 25°C uni | less otherwise noted | | | | | | Symbol Parameter | | Test | Test Conditions | | Тур | Max | Units | | | Off State | Charact | eristics | | | | | | | | I _R | Instantaneous Reverse Current | | V _R = 1200V | T _C = 25°C | - | - | 100 | μA | | | | | | T _C = 125°C | - | - | 1.0 | mA | | On State | Characte | eristics | | | | | | | | V _F | Instantane | ous Forward Voltage | I _F = 8A | T _C = 25°C | - | 2.8 | 3.3 | V | | ' | | | | T _C = 125°C | - | 2.7 | 3.1 | V | | ynamic
ر | Charact
Junction C | eristics
apacitance | V _R = 10V, I _F = 0 |)A | - | 30 | - | pF | | Switchin | g Charac | eteristics | | | | | | | | t _{rr} | Reverse Recovery Time $I_F = 1A$, $dI_F/dt = 100A/\mu s$, $V_R = 30V$ | | - | 25 | 32 | ns | | | | | | | $I_F = 8A$, $dI_F/dt = 100A/\mu s$, $V_R = 30V$ | | - | 35 | 44 | ns | | t _{rr} | Reverse R | ecovery Time | I _F = 8A, | | - | 300 | - | ns | | I _{RM(REC)} | Maximum | Reverse Recovery Current | | $I_{F}/dt = 200A/\mu s$ | | 4.3 | - | Α | | Q_{RR} | T | | - | 525 | - | nC | | | | t _{rr} | Reverse R | ecovery Time | I _F = 8A, | | - | 375 | - | ns | | S | Softness F | actor (t _b /t _a) | $dI_{F}/dt = 200A/\mu s,$ $V_{R} = 780V,$ $T_{C} = 125^{\circ}C$ | | - | 9 | - | - | | I _{RM(REC)} | Maximum | Reverse Recovery Current | | | - | 5.5 | - | Α | | Q_{RR} | Reverse R | ecovered Charge | | | - | 1.1 | - | μC | | t _{rr} | - | ecovery Time | I _F = 8A, | | - | 200 | - | ns | | S | | actor (t _b /t _a) | $dI_F/dt = 1000A/V_R = 780V,$ | - | 5.5 | - | - | | | I _{RM(REC)} | | Reverse Recovery Current | $T_{\rm C} = 125^{\circ}{\rm C}$ | - | 11 | - | Α | | | Q _{RR} | ļ | ecovered Charge | | | - | 1.2 | - | μC | | dl _M /dt | Maximum | di/dt during t _b | | | - | 310 | - | A/µs | | Thermal | Characte | eristics | | | | | | | | $R_{\theta JC}$ | Thermal R | esistance Junction to Case | ase TO-220 | | _ | _ | 1.75 | °C/W | | i vejC | monnari | colotarioc dariotion to case | 10 220 | | | | 1 | O, | ## Typical Performance Curves (per leg) Figure 1. Forward Current vs Forward Voltage Figure 3. t_a and t_b Curves vs Forward Current Figure 5. Maximum Reverse Recovery Current vs Forward Current Figure 2. Reverse Current vs Reverse Voltage Figure 4. t_a and t_b Curves vs dl_F/dt Figure 6. Maximum Reverse Recovery Current vs dl_F/dt ©2002 Fairchild Semiconductor Corporation Figure 7. Reverse Recovery Softness Factor vs dl_F/dt Figure 8. Reverse Recovered Charge vs $\mathrm{dI}_{\mathrm{F}}/\mathrm{dt}$ Figure 9. Junction Capacitance vs Reverse Voltage Figure 10. Reverse Recovery Current and Times vs Case Temperature Figure 11. DC Current Derating Curve ©2002 Fairchild Semiconductor Corporation ISL9K8120P3 Rev. A # Typical Performance Curves (per leg) (Continued) Figure 12. Normalized Maximum Transient Thermal Impedance ### **Test Circuit and Waveforms** $0 \xrightarrow{I_F} \frac{dI_F}{dt}$ $0 \xrightarrow{I_F} t_b \xrightarrow{I_F} 0.25 I_{RM}$ Figure 13. It_{rr} Test Circuit Figure 14. t_{rr} Waveforms and Definitions Figure 15. Avalanche Energy Test Circuit Figure 16. Avalanche Current and Voltage Waveforms ### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. | ACEx™ | FAST ® | MICROWIRE™ | SILENT SWITCHER® | UHC™ | |--------------------|--------------------------------|---------------------|------------------|-----------| | Bottomless™ | FASTr™ | OPTOLOGIC® | SMART START™ | UltraFET® | | CoolFET™ | FRFET™ | OPTOPLANAR™ | SPM™ | VCX™ | | CROSSVOLT™ | GlobalOptoisolator™ | PACMAN™ | STAR*POWER™ | | | DenseTrench™ | GTO™ | POP™ | Stealth™ | | | DOME™ | HiSeC™ | Power247™ | SuperSOT™-3 | | | EcoSPARK™ | I ² C TM | PowerTrench ® | SuperSOT™-6 | | | E^2CMOS^{TM} | ISOPLANAR™ | QFET™ | SuperSOT™-8 | | | EnSigna™ | LittleFET™ | QS™ | SyncFET™ | | | FACT™ | MicroFET™ | QT Optoelectronics™ | TinyLogic™ | | | FACT Quiet Series™ | MicroPak™ | Quiet Series™ | TruTranslation™ | | STAR*POWER is used under license ### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the - 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. ### PRODUCT STATUS DEFINITIONS ### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |