

Current Transducer LA 100-TP

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data Α Primary nominal r.m.s. current 100 I_{PN} Primary current, measuring range 0 .. ± 150 \dot{R}_{M} Measuring resistance @ $T_{a} = 70^{\circ}C$ $\mathbf{T}_{A} = 85^{\circ}\mathrm{C}$ @ ± 100 A max 50 with ± 12 V 42 Ω @ ± 120 A _{max} 22 0 0 14 Ω @ ± 100 A _{max} 110 0 20 102 Ω with ± 15 V @ \pm 150 A _{max} 0 33 20 25 Ω mΑ Secondary nominal r.m.s. current 50 Conversion ratio 1:2000 Supply voltage (± 5 %) ± 12 .. 15 Current consumption $10(@\pm 15 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 2.5 kV R.m.s. rated voltage 610 Accuracy - Dynamic performance data

	Accuracy - Dynamic performance data								
X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$	@ ± 15 V (± 5 %)	± 0.45		%				
		@ ± 12 15 V (± 5 %)	± 0.70		%				
$\mathbf{e}_{\!\scriptscriptstyle L}$	Linearity		< 0.15		%				
			Тур	Max					
I_{\circ}	Offset current @ $I_p = 0$, $T_A =$	Offset current @ $I_p = 0$, $T_{\Delta} = 25^{\circ}$ C			mΑ				
I _{OM}	Residual current 1) @ I _P = 0, a	Residual current $\stackrel{1}{=}$ @ $I_p = \stackrel{\circ}{0}$, after an overload of 3 x I_{pN}		Max ± 0.10 ± 0.15	mΑ				
I _{OT}	Thermal drift of I	- 25°C + 85°C	± 0.05	± 0.25	mΑ				
٥.	· ·	- 40°C 25°C	± 0.10	± 0.50	mΑ				
t _{ra}	Reaction time @ 10 % of Ipn	nay	< 500		ns				
t _{ra}	Response time 2 @ 90 % of		< 1		μs				
di/		1 max	> 200		A/µs				
f	Frequency bandwidth (- 1 de	3)	DC 2	200	kHz				

G	General data								
$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature		- 40 + 85	°C					
T _s	Ambient storage temperature		- 50 + 95	°C					
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	120	Ω					
		$T_A = 85^{\circ}C$	128	Ω					
m	Mass		24	g					
	Standards 3)		EN 50178						

 $\underline{\text{Notes}}$: $^{\text{1)}}$ The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- ³⁾ A list of corresponding tests is available

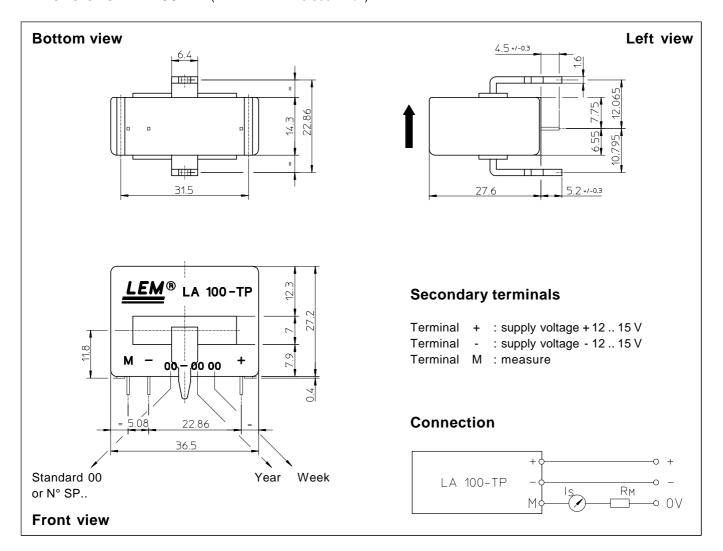
$I_{PN} = 100 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

981120/5

Dimensions LA 100-TP (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening & connection of primary

Recommended PCB hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm bus bar 6.4 x 1.6 mm 3.8 mm 3 pins 0.6 x 0.7 mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.