

# **Current Transducer LA 100-P**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).



Χ



# Electrical data Primary nominal r.m.s. current

| -PN                   |                                  |                              |                                                                                |                       |                    |                       |   |
|-----------------------|----------------------------------|------------------------------|--------------------------------------------------------------------------------|-----------------------|--------------------|-----------------------|---|
| I <sub>P</sub>        | Primary current, measuring range |                              |                                                                                | 0 ± 150               |                    |                       | Α |
| $\mathbf{R}_{M}$      | Measuring resistance @           |                              | $\mathbf{T}_{A} = 70^{\circ}\text{C} \mid \mathbf{T}_{A} = 85^{\circ}\text{C}$ |                       |                    | ;                     |   |
|                       |                                  |                              | $R_{_{ m M\ mir}}$                                                             | $\mathbf{R}_{M\;max}$ | $R_{_{ m M\ mir}}$ | $\mathbf{R}_{M\;max}$ |   |
|                       | with ± 12 V                      | $@ \pm 100 A_{max}$          | 0                                                                              | 50                    | 0                  | 42                    | Ω |
|                       |                                  | @ ± 120 A <sub>max</sub>     | 0                                                                              | 22                    | 0                  | 14                    | Ω |
|                       | with ± 15 V                      | @ $\pm$ 100 A <sub>max</sub> | 0                                                                              | 110                   | 20                 | 102                   | Ω |
|                       |                                  | @ ± 150 A <sub>max</sub>     | 0                                                                              | 33                    | 20                 | 25                    | Ω |
| I <sub>SN</sub>       | Secondary nominal r.m.s. current |                              | 50                                                                             |                       |                    | mΑ                    |   |
| K <sub>N</sub>        | Conversion ratio                 |                              |                                                                                | 1:                    | 2000               |                       |   |
| <b>V</b> <sub>c</sub> | Supply voltage (± 5 %)           |                              |                                                                                | ± 1                   | 2 1                | 5                     | V |
| I <sub>C</sub>        | Current consumption              |                              | $10(@\pm 15V)+I_{S}$ mA                                                        |                       |                    |                       |   |

# Accuracy - Dynamic performance data

Accuracy @  $I_{PN}$ ,  $T_{A} = 25^{\circ}C$ 

R.m.s. voltage for AC isolation test, 50 Hz, 1 mn

|                                                          | @ ± 12 15 V (± 5 %)                                                                                |               |        | ± 0.70                  |      |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------|--------|-------------------------|------|--|
| $\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$ | Linearity                                                                                          |               | < 0.15 |                         | %    |  |
|                                                          |                                                                                                    |               | Тур    | Max                     |      |  |
| $I_{\circ}$                                              | Offset current @ $I_p = 0$ , $T_A = 25^{\circ}C$                                                   |               |        | ± 0.10                  | mΑ   |  |
| I <sub>OM</sub>                                          | Residual current <sup>1)</sup> @ $\mathbf{I}_{P} = 0$ , after an overload of 3 x $\mathbf{I}_{PN}$ |               |        | Max<br>± 0.10<br>± 0.15 | mΑ   |  |
| I <sub>OT</sub>                                          | Thermal drift of I                                                                                 | - 25°C + 85°C | ± 0.05 |                         | mΑ   |  |
| 0.                                                       | Ü                                                                                                  | - 40°C 25°C   | ± 0.10 | ± 0.50                  | mΑ   |  |
| t <sub>ra</sub>                                          | Reaction time @ 10 % of I <sub>P max</sub>                                                         |               | < 500  |                         | ns   |  |
| t,                                                       | Response time 2) @ 90 % of I <sub>P max</sub>                                                      |               | < 1    |                         | μs   |  |
| di/dt                                                    | di/dt accurately followed                                                                          |               | > 200  |                         | A/µs |  |
| f                                                        | Frequency bandwidth (- 1 dB)                                                                       |               | DC 200 |                         | kHz  |  |

@ ± 15 V (± 5 %)

#### General data

|                           | onorar data                   |                     |           |          |
|---------------------------|-------------------------------|---------------------|-----------|----------|
| T <sub>A</sub>            | Ambient operating temperature |                     | - 40 + 85 | °C       |
| T <sub>s</sub>            | Ambient storage temperature   |                     | - 50 + 95 | °C       |
| $\mathbf{R}_{\mathrm{s}}$ | Secondary coil resistance @   | $T_A = 70^{\circ}C$ | 120       | $\Omega$ |
| -                         |                               | $T_A = 85^{\circ}C$ | 128       | $\Omega$ |
| m                         | Mass                          |                     | 18        | g        |
|                           | Standards 3)                  |                     | EN 50178  |          |
|                           |                               |                     |           |          |

Notes: 1) The result of the coercive field of the magnetic circuit

- 2) With a di/dt of 100 A/µs
- <sup>3)</sup> A list of corresponding tests is available

# $I_{PN} = 100 A$



#### **Features**

Α

kV

%

100

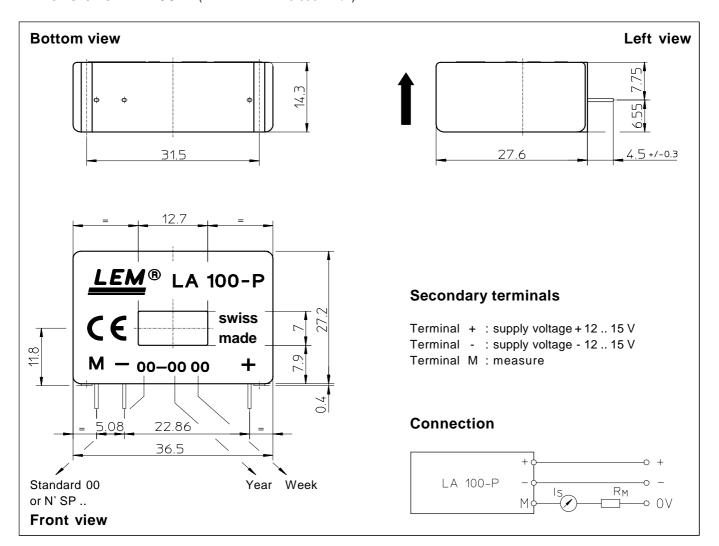
2.5

 $\pm 0.45$ 

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

## **Advantages**

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


### **Applications**

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980717/6



# **Dimensions LA 100-P** (in mm. 1 mm = 0.0394 inch)



## **Mechanical characteristics**

• General tolerance

• Primary through-hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins 0.63 x 0.56 mm

0.9 mm

#### Remarks

- $I_s$  is positive when  $I_p$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.