

Current Transducer LA 125-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data \mathbf{I}_{PN} Α Primary nominal r.m.s. current 125 I_P Primary current, measuring range $0.. \pm 200$ \mathbf{R}_{M} Measuring resistance @ $T_{\Lambda} = 70^{\circ}C$ $T_A = 85^{\circ}C$ @ ± 125 A _{max} 52 with ± 12 V 14 50 Ω @ ± 200 A _{max} 20 5 14 18 Ω @ ± 125 A _{max} 25 74 40 72 Ω with ± 15 V @ $\pm 200 A_{max}$ 25 34 $40^{1)}$ $40^{1)}$ Ω Secondary nominal r.m.s. current 125 mΑ Conversion ratio 1:1000 Supply voltage (± 5 %) ± 12 .. 15 Current consumption $16(@ \pm 15 V) + I_s mA$ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 3 kV Accuracy - Dynamic performance data Accuracy @ I_{PN} , $T_{A} = 25$ °C $@ \pm 15 \ V \ (\pm 5 \%)$ ± 0.60 % @ + 12 15 V (+ 5 %)+ 0.80

	₩ ± 1	2 13 V (± 3 %)	± 0.60		70
$\mathbf{e}_{\scriptscriptstyle\! \scriptscriptstyle L}$	Linearity		< 0.15		%
			Тур	Max	
I_{o}	Offset current @ $I_P = 0$, $T_A = 25^{\circ}C$			Max ± 0.40	mA mA
I _{OM}	Residual current ²⁾ @ $I_p = 0$, after an overload of 3 x I_{pN}			± 0.50	mΑ
I _{OT}	Thermal drift of I _o	0°C + 70°C	± 0.15	± 0.50	mΑ
		- 25°C + 85°C	± 0.15	± 0.60	mΑ
t _{ra}	Reaction time @ 10 % of $I_{\rm P\ max}$		< 500		ns
t,	Response time 3) 4) @ 90 % of I _{P max}		< 1		μs
di/dt	di/dt accurately followed 4)		> 200		A/µs
f	Frequency bandwidth 4) (- 1 dB)		DC 1	100	kHz

	General data			
$\mathbf{T}_{_{\mathrm{A}}}$	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	32	Ω
		$T_A = 85^{\circ}C$	33.5	Ω
m	Mass		40	g
	Standards 5)		EN 50178	

Notes: 1) Measuring range limited to ± 180 A max

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs
- 4) The primary conductor is best filling the through-hole and/or the return of the primary conductor is above the top of the transducer
- 5) A list of corresponding tests is available

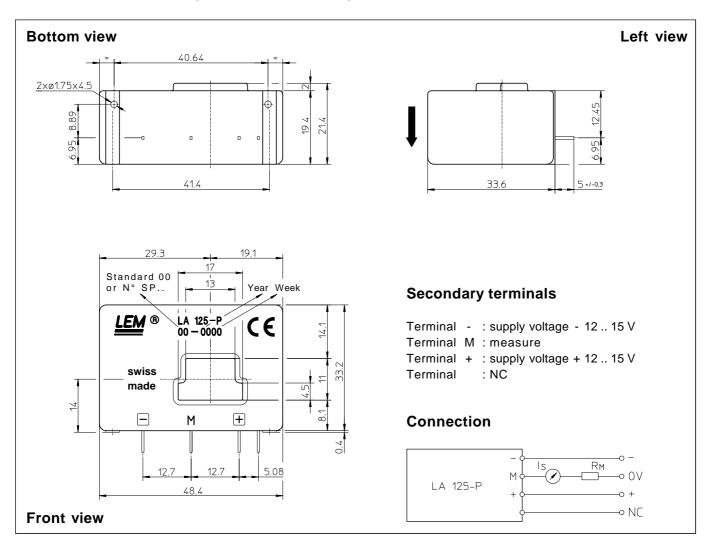
125 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- · Printed circuit board mounting
- · Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- Very good linearity
- · Low temperature drift
- · Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

980716/5

Dimensions LA 125-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary 4 pins 0.63 x 0.56 mm Recommended PCB hole

• Supplementary fastening Recommended PCB hole Recommended screws

LEM code

± 0.2 mm

17 x 11 mm

0.9 mm

2 holes Ø 1.75 mm

2.4 mm

KA 22 x 6

47.30.60.006.0

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a primary bar in low position in the through-hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.