

Monolithic Linear IC

Telephone Answering Machine

£2572

General Description

The LA2800N is a telephone answering machine-use bipolar IC that performs the basic functions required for telephone answering machine and has the microcomputer interfaces to control these functions. The LA2800N is housed in a 30-pin DIP shrink package.

The LA2800N can be used in conjunction with the LA4070 that contains the power amp for telephone answering machine, various drivers, and a 5V regulator to make up a telephone answering machine system.

Functions

- Preamp for recording/playback x 2 (with ALC) (Recording: DC bias)
- 2) Microphone amp
- 3) Beep tone input amp
- 4) Analog switches for switchover of (1) to (3)
- 5) Voice detector
- 6) Zero-cross comparator for beep tone detection
- 7) CPC detector (CPC: Calling Party Control)
- 8) Line amp
- 9) Microcomputer interfaces

Features

- . Since the basic functions required for telephone answering machine can be controlled by using a microcomputer, a unique telephone answering machine can be made available by preparing a software program.
- . The recording amp gain and DC bias current can be set independently by an external resistor.
- . Low distortion

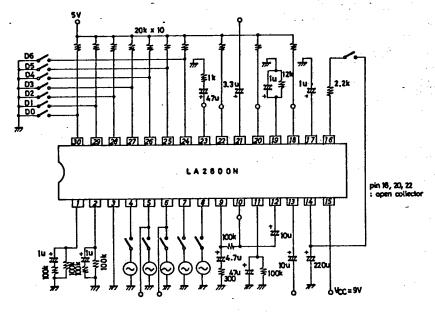
Maximum Ratings at Ta=25°C

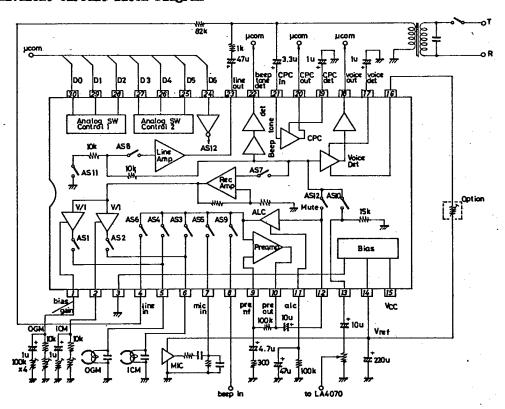
Maximum Supply Voltage
Allowable Power Dissipation
Operating Temperature
Storage Temperature

V_{CC}max Pdmax Ta≦70°C Topg Tstg unit
15 V
400 mW
-20 to +70 °C
-40 to +125 °C
Continued on next page.

Case Outline 3061-D30SIC
(unit:mm)

8067AT/5217KI,TS No.2572-1/9




		LAZOOON				
Continued from preceding	ng page.		45	unit		
Allowable Flow-in Cur	rent	Tag	1.0	mA		4.3
Allowable Flow-in Cur		I ₁₈	1.0	mA	* *	
Allowable Flow-in Cur		I ₂₀	1.0	mA '		
Allowable Flow-in Cur		I ₂₂	1.0	mA		
Allowable Flow-in Cur		I ₂₄	1.0	mА		
Allowable Flow-in Cur		I ₂₅	1.0	mA		
Allowable Flow-in Cur		126 T26	1.0	mA		
Allowable Flow-in Cur		I ₂₇	1.0	mA	-	:
Allowable Flow-in Cur	-	I ₂₈	1.0	mA		
	rrent	I ₂₉ I ₃₀	1.0	mA		
Operating Conditions at	π ₂ -250℃			unit		
Recommended Supply Vol		W	9	V		
Operating Voltage Rang	_	V _{CC} op	7 to 12	V		
Operating Characteristic [Preamp] 0	es at Ta= IGM REC	CC=AA	min	typ	max	unit
Voltage Gain	v_{GC}	Closed loop -70dBs input Input pin7,Test pin10	, 47	49	51	dB
Total Harmonic	THD	Input -40dBs 1kHz,Input	pin7,	0.5	1.0	. %
Distortion		Test pin10				
ALC Turn Point	VALC	Input pin7, Test pin10		-	-50	dB
ALC Saturation	Vos	Input -40dBs 1kHz, Input	pin7, 453	570	718	mVrms
Output Level	OD	Test pin10				
Equivalent Input	v_{NI}	Input short (2.2kohms			50	uVrms
Noise Voltage		contained) FLAT, Test pin	10			
[REC Amp] O	GM REC					
Voltage Gain	v_{GR}	Pin1-GND, Z=50kohms,	-6.8	-3.8	-0.8	dB
		Input pin12, Test pin5				
Output Bias Voltage		Pin1-GND, Z=100kohms, Test	pin5 1.1	1.8	2.3	V
[Line Amp] O	GM OUT					
Voltage Gain	$v_{ m GL}$	Input pin12, Test pin23	8	9.3	11	đВ
Maximum Output Voltage	Vomax	Input pin12, Test pin23	2.0			Vrms
[Beep Tone Detector] 0	GM PLAY					
Output Signal Duty	D•R	Pin 12 input -22dBs,	40	50	60	*
Ratio		Input pin12, Test pin22			٠.	
Output Terminal	V sat	Pin 12 GND,5V applied th			0.4	V
ON-State Voltage		R=20kohms, Input pin12, Te	st pin22			
[Voice Detector] 0	GM PLAY					
Sensitivity	VvoiceL	f=1kHz,Pin 12 input-24dB	s,		0.3	V
	Mana Jak	Input pin12, Test pin18	. 4			77
	VVOICE	Pin12 input-28dBs,	4		6	V
Output Man 12 3	TT 1	Input pin12, Test pin18			^ ~	4.
Output Terminal	Vsat	1V applied to pin17,5V a	bbrieg fo		0.3	V
ON-State Voltage		pin18 through R=20kohms Input pin17, Test pin18				
[Output Terminal ON-Sta	te Volts					
Pin 20 (CPC Output) Vo		Pin21 GND,5V applied to	nin20		0.3	v
I III LO (OLO OMOPMO) 10		through R=20kohms, Test			٠.,	•
[Voltage Applied to Con	trol Pir					
Voltage Applied to	v _H	"1"=H level, Applied thro	ugh 1			V
Control pin		resistor		•		
(Pins 24 to 30)	V _L	"O"=L level			0.3	V

T-75-07-15

Test Circuit

Equivalent Circuit Block Diagram

LA2800N

Mode Select (On-chip switches AS1 to AS12 are controlled by D0 to D6.)
D0 to D6(pin30 to pin24):"1"="H"level,"D"="L"level
AS1 to AS12:"1"=ON,"0"=OFF

D2,D1,D0 - AS1 to AS6,AS9										
MODE	D2	D1	D0	AS1	AS2	AS3	AS4	AS5	AS6	AS9
CLA	0	0	0	0	0	1_	0	0	0	0
OGM REC	0	0	1	1	0	0	0	1	0	0
BEEP REC	0	1	0	1	0	0	0	0	0	1
OGM PLAY	0	1_	1	0	0_	0	1	0	0	0
PLAY	0	0	0	0	0	1	0	0	0	0
DICTATION REC	1	0	1	0	1	0_	0	1	0	0_
OGM OUT	0	1	1	0	0	0	1	0	0_	0
ICM REC	. 1	1	1	0	1	_0_	0	0	1	0_
2 WAY REC	1	1	1	0	_1_	0	0	0	1_	0
CALL COUNTER OUT	0	1	0	1	0	0	0	0	0	1
ICM OUT	0	0	0	0	0	1	0	0	0	0
ALARM	0	1	0	1	0	0	0	0	0	1
OGM CHANGE	1	0	0	1	0	0	0	0	1	0
LINE MUTE I	0	1	1	0	0	0	1	0	0	0
LINE MUTE II	0	0	0	0	0	1	0	0	0	0
REMOTE CONTROL SIGNAL MUTE	0	0	0	0	0	1	0	0	0	0
2 WAY BEEP	1	1	0	<u> 0 </u>	1	0	0	0	0	1

D5,D4,D3 -> AS8,AS10,AS7,AS11							
	D5	D4	D3	AS8	AS10	AS7	AS11
CLA	0.	0	0	0	0	0	0
OGM REC	0	0	1	0	0	1	0
BEEP REC	0	0	1	0	0	1	0
OGM PLAY	0	1	0	0.	1	0	0
PLAY	0	1	0	0	1	0	0
DICTATION REC	0	0	1	0	0	1	0
OGM OUT	1	1	0	1	1	0	0
ICM REC	0	1	1 *	0	1	1	0
2 WAY REC	0	0	1	0	0	1	0
CALL COUNTER OUT	1	1	0	1	1.	0	0
ICM OUT	1	1	0	1	1	0_	0
ALARM	0	1	0	0	1	0	0
OGM CHANGE	0	1	1	0	1	1	0
LINE AMP MUTE I,II	0	1	0	0	1	0	0
REMOTE CONTROL SIGNAL MUTE	0	. 1	0	0	1	0	0
2 WAY BEEP	1	1	1	1 1	1	1_	1

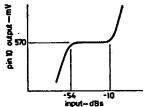
$D6 \rightarrow AS12$		
MODE	D6(MUTE)	AS12
LINE IN MUTE	0	1

Description of Equivalent Circuit Block Diagram

1) D1 to D6 (pin 30 to pin 24)

Each pin can be driven by the microcomputer output. D0 to D2 switches and D3 to D5 switches are independent.

2) BIAS


Provides Vref(pin 14) of approximately 4.2V.

3) Perami

Amplifies the input signal at pins 4 to 8. The open-loop gain characteristic of the amp is shown in Fig.G-6.

4) ALC

The ALC operates in the input range of -54 dBs to approximately -10 dBs. The ALC saturation output level is 570 mA. The ALC characteristic is shown in Fig.G-1

5) MUTE(AS12)

Mutes the preamp output. When pin 24 is at "1" level, the AS12 opens.

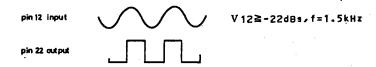
6) Recamp

Amp used for recording

7) V/I(pin1,pin2) recording current

V/I conversion is made to draw the recording current for DC bias. The conversion gain and bias current can be changed arbitrarily by external constants connected to pin 1 and pin 2. When the OGM head and the ICM head have the same characteristics, the number of parts can be reduced by shorting pin 1 and pin 2.

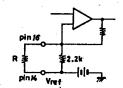
8) Lineamp


Buffer amp for line output

9) Beep tone det

A microcomputer is used to identify the beep tone signal or remote control signal included in the pin 22 output.

Zero-cross comparator for pin 12 input signal (V12)


The duty ratio of the pin 22 output waveform is shown in Fig.G-3.

10) Voice det

Detects the presence or absence of a call. Pin 12 input signal (V12) level detection V12≥-24dBs-----Pin 18 "L" Adjustment of detection level. R can be used to set the detection level. Refer to the figure shown right.

The Voice detection sensitivity - $V_{\rm CC}$ characteristic is shown in Fig.G-4

11) CPC det (Calling Party Control) Detects ON-hook of calling party.

line input
pin 20 output

The relation between peak value and pulse width of the line input signal that can be detected is shown in Fig.G-5

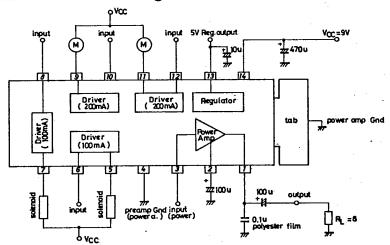
Mode Description

- 1) CLA (Clear): Input(pin 6), Output(pin 22)
 - . Standby mode
 - . Beep tone usable for microcomputer control
- 2) OGM REC (Outgoing Message Rec.): Input(pin 7), Output(pins 5,22)
 - . Outgoing message recording
- 3) BEEP REC: Input(pin 8), Output(pins 5,22)
 - BEEP signal recording before and after outgoing message
- 4) OGM PLAY: Input (pin 5), Output(pins 13,22) Outgoing message playback and check
- 5) PLAY: Input (pin 6), Output(pins 13,22)
 - . Incoming message playback
 - . Recorded dictation playback
- 6) DICT REC: Input(pin 7), Output(pins 6,22)
 - MIC-used dictation recording (recording of message to family or brief message contents)
- 7) OGM OUT: Input(pin 5), Output (pins 13,22,23)
 - . Outgoing message line-output (at remote control operation mode, etc)
 - . Outgoing message playback
- 8) ICM REC (Incoming Message Rec.): Input(pin 4), Output(pins 6,13,22)
 - . Incoming message recording (remote-controlled from the place where you have gone)
 - . Recording of dictation sent from the place where you have gone
- 9) 2-WAY REC: Input(pin 4), Output(pins 6,22)
 - . Recording of both conversations while talking over the telephone
 - . Incoming message recording
- 10) CALL COUNTER OUT: Input (pin 8), Output(pins 13,22,23)
 - . Speaker-output and line-output of alarm sound
 - . Used when sending alarm sound at the end of outgoing message
 - . Possible to send back the call of you calling party to surprise such party by line-inputting to pin 8.
- 11) ICM OUT: Input(pin 6), Output(pins 13,22,23)
 - . Incoming message playback
 - . Listening to the incoming message through the telephone installed in the place where you have gone.
 - . Incoming message line-output
 - . Recorded dictation playback
- 12) ALARM: Input(pin 8), Output(pins 13,22)
 - . Speaker-output of alarm sound at the time of recording start
 - . Speaker-output of various kinds of signal
- 13) OGM CHANGE: Input (pin 4), Output (pins 5,13,22)
 - . Change of outgoing message by remote control from the place where you have gone
- 14) LINE MUTE I
 - . Same as OGM PLAY

- LA2800N

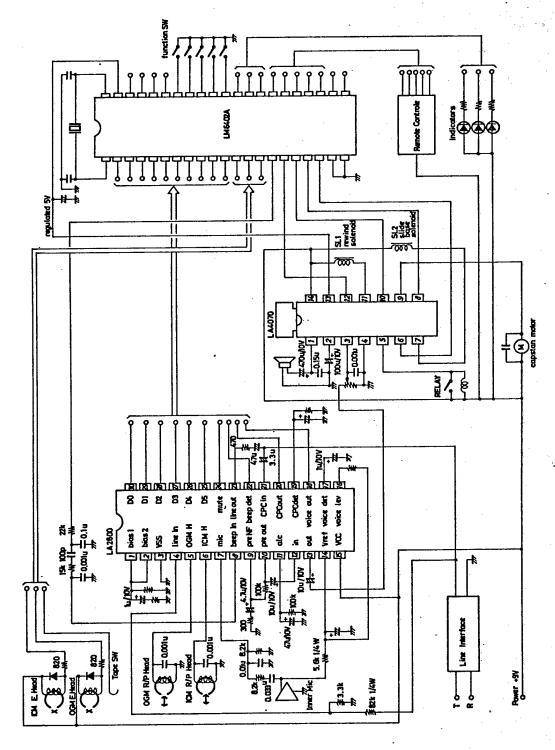
- 15) LINE MUTE II
 - . Same as PLAY
- 16) REMOTE CONTROL SIGNAL MUTE
 - . Same as PLAY
- 17) 2-WAY BEEP: Input(pin 8), Output(pins 6,13,22,23)
 - . Speaker-output of alarm sound and incoming message recording and also line-output to your calling party
 - . Your calling party is made known that the incoming message is being recorded.
 - Line-output is down 6dB from line-output at other mode.
- 18) LINE IN MUTE: D6(pin 24)
 - . Output muting

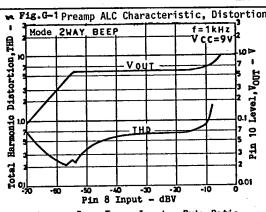
D6(pin 24)	AS12	
1(H level)	O(open)	MUTE
O(L level)	1(closed)	MUTE release

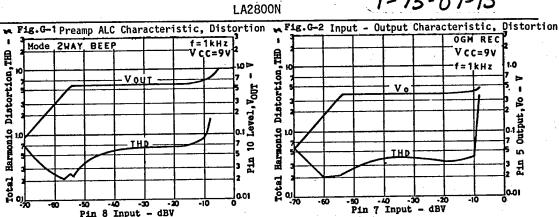

[Reference] General Description of LA4070

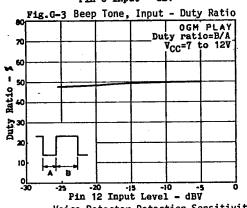
Functions . Power amp (V_{CC}=9V,R_L=8ohms,Po=0.5W) . 5V regulator (I_{OUT}=70mA max) . Driver (200mA max X 2, 100mA max X 2, with killer diode)

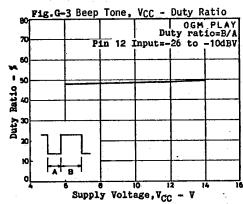
Case Outline: DIP-14T


Main Characteristics		min	typ	max	unit
Power Amp Gain	$f=1kHZ, R_{I}=8ohms, Rg=600ohms$	20	22	24	dΒ
Power Amp Output	THD=10%		0.5		W
Power Amp Distortion	Po=0.2W		0.5	1.5	%
Regulator Output Voltage		4.5	5.0	5.5	V
Regulator Output Current				70	mA
Driver (Active-low)	I _{OUT} =200mA(Pins 9,11)		0.35	0.5	V
Driver (Active-low) Output Saturation Voltage	I _{OUT} =100mA(Pins 5,7)		0.35	0.5	V.


Equivalent Circuit Block Diagram




T-75-67-15


Sample Application Circuit: LA2800N/LA4070

