

Current Transducer LA 50-S/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 50 A$

Electrical data

$oldsymbol{I}_{PN} \ oldsymbol{I}_{P} \ oldsymbol{R}_{M}$	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		50 0 ± 100 $\mathbf{R}_{M \min} \mathbf{R}_{M \max}$		A A
	with ± 15 V	@ ± 50 A _{max}	0	330	Ω
		$@ \pm 100 A_{max}$	0	100	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
K _N	Conversion ratio		1:2000)	
V _C	Supply voltage (± 5 %)		± 15		V
I _C	Current consumption		10 + I 。		mΑ
\mathbf{V}_{d}	R.m.s. voltage for AC	isolation test, 50 Hz, 1 min	3		kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{\scriptscriptstyle G}}{\boldsymbol{e}_{\scriptscriptstyle L}}$	Overall accuracy \bigcirc $\mathbf{I}_{PN_{s}}$ \mathbf{T}_{A} = 25°C Linearity		± 0.5 < 0.1		% %
I _О	Offset current @ $I_P = 0$, $T_A = 25$ °C Thermal drift of I_O	- 10°C + 70°C	Typ ± 0.2	Max ± 0.1 ± 0.4	mA mA
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	50	μs A/μs kHz

General data

T_{A}	Ambient operating temperature	- 10 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	130	Ω
m	Mass	45	g
	Standards ²⁾	EN 50178	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

• $I_p = 0.. \pm 100 A$ • $K_N = 1:2000$

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes : 1) With a di/dt of 50 A/µs

991014/5

²⁾ A list of corresponding tests is available.

Dimensions LA 50-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

• Primary through-hole

· Connection of secondary

± 0.2 mm 2 holes ∅ 3.2 mm 12.7 x 6.35 mm Molex 5045-04/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- To measure nominal currents of less than 50 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns < 50 At).