Monolithic Linear IC No.3265 **LA6532M** 4-Channel BTL-Use Driver The LA6532M is a 4-channel BTL-use driver designed for compact disc pickup actuation. ## Functions and Features - · BTL-use 4-channel power amp - \cdot I_O max 700mA \times 2400mA \times 2 (with voltage limiter) - · With muting function | Maximum Ratings at Ta = 25°C | | | | 1 | unit | | |---|----------------------|----------------------------|--------------|------------|----------------------|-------| | Maximum Supply Voltage | V_{CC} max | | | 9 | V | | | Allowable Power Dissipation | Pd max | | 0. | .9 | W | | | Differential Input Voltage | V_{ID} | | | 8 | V | | | Common-Mode Input Voltage | V_{ICM} | | | 8 | V | | | Maximum Input Voltage | V _{INB} max | Buffer amp | | 8 | V | | | Muting Pin Voltage | V _{Mute} | | | 8 | V | | | Operating Temperature | Topr | | -20 to +7 | ' 5 | °C | | | Storage Temperature | Tstg | | -55 to +15 | 0 | $^{\circ}\mathrm{C}$ | | | 450 7 FE 1-1- W | | | | | | | | Operating Conditions at $Ta = 25$ | °C | | | 1 | anit 📉 | | | Maximum Supply Voltage | v_{cc} | | | 5 | V | | | Load Resistance | R_L | Pins 3-4,12-13,18-19,27-28 | | 8 | Ω | | | | | | | | | | | Operating Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = 5.0V$ min typ r | | | | | | unit | | No-Loaded Current Dissipation | 1 I _{CC} 1 | Note 1 | 25 | 40 | 60 | mA | | No-Loaded Current Dissipation | I_{CC} | Note 2 | 5 | 9 | 2 0 | mΑ | | No-Loaded Current Dissipation | 3 I _{CC} 3 | Note 3 | 25 | 40 | 60 | mA | | No-Loaded Current Dissipation | $4 I_{CC}4$ | Note 4 | 5 | 9 | 20 | mΑ | | Output Offset Voltage 1 | $V_{OF}1$ | Note 5 Amp 1-2,7-8 | 50 | | 50 | mV | | Output Offset Voltage 2 | $V_{ m OF}2$ | Note 5 Amp 3-4,5-6 | -30 | | 30 | mV | | | | | Continu | ied o | n next | page. | ## Package Dimensions 3073A-M30IC (unit: mm) | Continued | from | preceding | page. | |-----------|----------|-----------|-------| | Communaca | 11 0 111 | proceding | Page. | | Deffer 1 Verset Outside | 37 1 | D 0° 1 | min | typ | max | unit | |---------------------------------|-------------------|--|-----|--------------|------|------| | Buffer 1 Input-Output | ABIOI | Buffer amp 1 | -30 | | 30 | mV | | Voltage Difference | | | | | | | | Buffer 2 Input-Output | $V_{BIO}2$ | Buffer amp 2 | 0.5 | 0.6 | 0.8 | V | | Voltage Difference | | | | | | - | | Amp 2 Input-Output | $V_{IO}2$ | Amp 2 | 0.5 | 0.6 | 0.8 | V | | Voltage Difference | | | | | | | | Amp 7 Input-Output | $V_{IO}7$ | Amp 7 | 0.5 | 0.6 | 0.8 | V | | Voltage Difference | | | | | | | | Input Bias Current | $I_{\mathbf{B}}$ | Note 6 | | 100 | 500 | nA | | Buffer Input Voltage Range | V_{BICM} | Buffer amp | 1.5 | $V_{\rm CC}$ | -1.5 | V | | Common-Mode Input Voltage Range | V_{ICM} | | 1.0 | V_{CC} | -1.5 | V | | Output Source Voltage | $V_{O}1$ | $R_L = 8.0\Omega 700 \text{mA amp (Note 7)}$ | 3.4 | 3.6 | | V | | Output Sink Voltage | $V_{O}2$ | $R_L = 8.0\Omega 700 \text{mA amp (Note 8)}$ | | 1.0 | 1.4 | V | | Output Source Voltage | v_{o3} | $R_L = 8.0\Omega 400 \text{mA amp (Note 7)}$ | 2.8 | 3.4 | | V | | Output Sink Voltage | $V_{O}4$ | $R_L = 8.0\Omega 400 \text{mA amp (Note 8)}$ | | 1.6 | 2.2 | V | | Closed-Circuit Voltage Gain | $V_{\mathbf{G}}$ | | | 6.0 | | dB | | Output Limiting Voltage | V_{OL} | Amp 3, amp 6 | | 5.0 | | V | | Muting Pin OFF-State Voltage | V_{Mute} | | | 2.2 | | V | | Muting Pin OFF-State Current | I _{Mute} | | | 80 | | À | | | | | | | | | Note 1 Muting OFF. Buffer $22k\Omega$ across $V_{\rm IN-}$ and $V_{\rm O}.~V_{\rm IN+}$ pin grounded Note 2 Muting ON. Buffer $22k\Omega$ across V_{IN-} and V_{O} . V_{IN+} pin grounded Note 3 Muting OFF. Buffer 22k Ω across $V_{\rm IN-}$ and $V_{\rm O}$. $V_{\rm IN+}$ pin connected to 1/2V $_{\rm CC}$ Note 4 Muting ON. Buffer $22k\Omega$ across V_{IN-} and V_O . V_{IN+} pin connected to $1/2V_{CC}$ Note 5 For bridge amp, represents the difference between outputs. Note 6 All V_{IN} connected to $1/2V_{CC}$. $100k\Omega$ connected to the input. Measure the voltage difference. V_{IN} and V_{O} connected through $100k\Omega$. Measure the voltage difference between pins. Note 7 Voltage (source) relative to GND when 8Ω load is connected across outputs of bridge amp Note 8 Voltage (sink) relative to GND when 8Ω load is connected across outputs of bridge amp * Be carefull in handling the LA6532M, because dielectric breakdown is liable to occur. ## **Equivalent Circuit Block Diagram** - No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss. - Anyone purchasing any products described or contained herein for an above-mentioned use shall: - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use: - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.