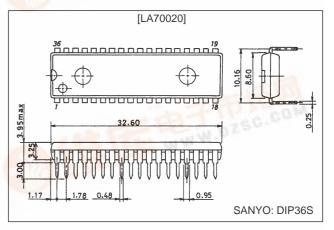
Ordering number : EN5711A

Monolithic Linear IC

LA70020, 70020M

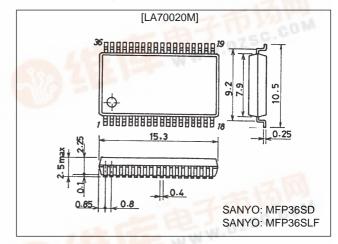
Recording/Playback Amplifier for VHS VCRs

Overview


The LA70020 and LA70020M are 6-head amplifiers adding hi-fi recording/playback amplifiers to the LA70011/LA70011M recording/playback amplifiers for VHS VCR video signals. When used in combination with the LA71000M and LA71500M Series of video signal processing ICs, they permit Y/C recording without current adjustment.

Features

- Combining hi-fi and video amplifiers onto a single chip saves space on the circuit board.
- Connecting the playback amplifier input directly to the head reduces the number of external elements required.
- The recording amplifiers use a fixed-current drive configuration that yields stable recording characteristics even under changing loads. They include built-in automatic gain control circuits.
- The LA70020, encapsulated in DIP package, can be mounted at the right end of the LA70001 and LA70011 sockets. The LA70020M lacks this flexibility because its MFP package has a different pin pitch.


Package Dimensions Washington

3170-DIP36S 400mil

unit: mm

3129-MFP36SD, MFP36SLF

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum power supply voltage	V _{CC} max		6.0	V
Maximum power dissipation	-1.761	Ta ≤ 65°C [LA70020]	1000	mW
	Pd max	Ta ≤ 65°C [LA70020M] 114.3 × 76.1 × 1.6 mm: glass epoxy	1000	mW
Operating temperature	Topr		-10 to +65	°C
Storage temperature	Tstg		-40 to +150	°C

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V _{CC}		5.0	V
operating supply voltage range	V _{CC} op		4.8 to 5.3	V

Electrical Characteristics at Ta = 25°C (Video Circuits)

Parameter		Symbol Conditions		Ratings			Unit
Parameter		Symbol	Conditions	min	typ	max	Unit
Playback Mode		T					
Current drain		I _{CCP}	Current flowing into pin 13	44	53	60	mA
	SP-L CH1	G _{VP} 1	V _{IN} = 38 mVp-p, f = 4 MHz	56	59	62	dB
Voltage gain	SP-H CH2	G _{VP} 2		56	59	62	dB
	EP-L CH3	G _{VP} 3		56	59	62	dB
	EP-H CH4	G _{VP} 4		56	59	62	dB
Voltage gain difference		ΔG _{VP} 1	$G_{VP}1 - G_{VP}2$	-1	0	+1	dB
Intermede gain difference		ΔG _{VP} 2	$G_{VP}3 - G_{VP}4$	-1 -1	0	+1 +1	dB dB
Intermode gain difference	CH1	ΔG _{VP} 3	G _{VP} 3 — G _{VP} 1 Ratio of the output from a 1.1 MHz low pass	-1	0	+1	uв
Converted input noise voltage	CH2 CH3 CH4	V _{NIN1} V _{NIN2} V _{NIN3} V _{NIN4}	filter to the output with no input under the same conditions as those used for measuring voltage gain.		1.0	1.5	μVrms
Frequency characteristic	CH1 CH2 CH3 CH4	ΔV_{fp} 1 ΔV_{fp2} ΔV_{fp3} ΔV_{fp4}	Ratios of the output for V_{IN} = 38 mVp-p and f = 7 MHz to the voltage gains $G_{VP}1$, $G_{VP}2$, $G_{VP}3$, and $G_{VP}4$.	-2.5	0		dB
Secondary harmonic distortion	CH1 CH2 CH3 CH4	$\Delta V_{HDP}1$ ΔV_{HDP2} ΔV_{HDP3} ΔV_{HDP4}	Ratio of the 8 MHz (secondary) component of the output to its 4 MHz (primary) component for $V_{IN} = 38 \text{ mVp-p}$ and $f = 4 \text{ MHz}$.		-40	-35	dB
Maximum output level	CH1 CH2 CH3 CH4	ΔV_{OMP1} ΔV_{OMP2} ΔV_{OMP3} ΔV_{OMP4}	Output level, for f = 1 MHz, at which the ratio of the 3 MHz (tertiary) component to the 1 MHz (primary) component is -30 dB.	1.0	1.2		Vp-p
Crosstalk SP		V _{CR} 1	Ratio of the output for $V_{IN} = 38 \text{ mVp-p}$ and $f = 4 \text{ MHz}$ to $G_{VP}1$.		-40	-35	dB
		V _{CR} 2	Ratio of the output for $V_{IN} = 38 \text{ mVp-p}$ and $f = 4 \text{ MHz}$ to $G_{VP}2$.		-40	-35	dB
		V _{CR} 3	Ratio of the output for $V_{IN} = 38 \text{ mVp-p}$ and $f = 4 \text{ MHz}$ to $G_{VP}3$.		-40	-35	dB
Crosstalk EP		V _{CR} 4	Ratio of the output for $V_{IN} = 38 \text{ mVp-p}$ and $f = 4 \text{ MHz}$ to $G_{VP}4$.		-40	-35	dB
		ΔV _{ODC} 1	CH1 — CH2				
		ΔV _{ODC} 2	CH3 — CH4				
		ΔV _{ODC} 3	CH1 — CH3	400			mV
Output DC offset		ΔV _{ODC} 4	CH2 — CH4	-100	0	+100	
		ΔV _{ODC} 5	CH1 — CH4				
		ΔV _{ODC} 6	CH2 — CH3				
Envelope detector output pin vol	tage	V _{ENV}	T12 DC level with no signal input.	0	0.8	1.4	V
		V _{ENVSP} 1	T12 DC level at which T13A output level is 150 mVp-p for f = 4 MHz.	2.0	2.5	3.0	V
Envelope detector output pin vol	tage SP	V _{ENVSP} 2	T12 DC level at which T13A output level is 400 mVp-p for f = 4 MHz.	4.0	4.5	5.0	V
	. ==	V _{ENVEP} 1	T12 DC level at which T13A output level is 125 mVp-p for f = 4 MHz.	2.0	2.5	3.0	V
Envelope detector output pin vol	tage EP	V _{ENVEP} 2	T6 DC level at which T7A output level is 300 mVp-p for f = 4 MHz.	4.0	4.5	5.0	V
Comparator output valtage		V _{COMP} 1	T8 DC level for V_{IN} = 38 mVp-p and f = 4 MHz.		0.4	0.7	V
Comparator output voltage		V _{COMP} 2	T8 DC level for V_{IN} = 38 mVp-p and f = 4 MHz.	4.5	4.8		V
		R _{PON} 24 R _{PON} 29	DC difference for 1 and 2 mA current inputs.		4	6	Ω
		TR1-1	Normal → Trick1: *1	3.2		5.0	V
Takah da arah alah 1		TR1-2	Trick1 → Normal	1.2		2.8	V
Trick threshold level		TR2-1	Normal → Trick2 : *1	0.0		0.8	V
		TR2-2	Trick2 → Normal	1.2		2.8	V

Continued from preceding page.

Parameter	Cumbal	Conditions	Ratings			Unit	
Parameter	Symbol	Conditions	min	typ	max	Onit	
	HAP-1	SP → EP : *1	1.7		5.0	V	
HA playback threshold level	HAP-2	EPSP	0.0		1.3	V	
	SW30-1	Lch → Hch : *1	1.2		5.0	V	
SW30 threshold level	SW30-2	Hch → Lch	0.0		0.8	V	
Recording Mode						•	
Current drain	I _{CCR}	Current input at pin 13.	52	59	66	mA	
REC AGC AMP output level	V _{RSP}	Output level for $V_{IN} = 400 \text{ mVp-p}$ and $f = 4 \text{ MHz}$.	127	135	143	mVp-p	
·	V _{REP}		104	111	119	mVp-p	
Intermode gain difference	ΔGVR	VRSP/VREP	1.4	1.7	2.0	dB	
	ΔV_{AGC} 1-SP ΔV_{AGC} 1-EP	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 700$ mVp-p.		0.5	1.0	dB	
REC AGC AMP control characteristic	ΔV_{AGC} 2-SP ΔV_{AGC} 2-EP	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 100$ mVp-p.	-1.0	-0.5		dB	
REC AGC AMP frequency characteristic	ΔV _{FRS} ΔV _{FRE}	Ratio of f = 7 MHz output to f = 1 MHz output for V_{IN} = 400 mVp-p. *2	-1	0	+1	dB	
REC AGC AMP secondary primary distortion	$\Delta V_{HDRS} \ \Delta V_{HDRE}$	Ratio of the 8 MHz (secondary) component of the output to its 4-MHz (primary) component for $V_{IN} = 400 \text{ mVp-p}$ and $f = 4 \text{ MHz}$.		-45	-40	dB	
REC AGC AMP maximum output level	$\Delta V_{MOSP} \ \Delta V_{MOEP}$	Output level, for f = 4 MHz, at which the secondary distortion is –35 dB.	20	22		mApp	
REC AGC AMP muting attenuation	ΔV_{MRS} ΔV_{MRE}	Output level divided by V_{RSP} or V_{REP} for $f = 4$ MHz and $V_{IN} = 400$ mVp-p.		-45	-40	dB	
REC AGC AMP cross modulation relative level	ΔV _{CYS} ΔV _{CYE}	Output ratio (4M +/ 629k)/4M for V_{IN} = 400 mVp-p and f = 4 MHz at T9A and V_{IN} = 2.4 Vp-p and f = 629 kHz at T10A.		-45	-40	dB	
HA REC threshold level	H _{AR} -1	SP → EP : *1	1.7		5.0	V	
THE CHICOTOG ICVO	H _{AR} -2	$EP \to SP$	0.0		1.3	V	
REC MUTE threshold level	MUTE-1	MUTE OFF → MUTE ON *1	1.2		2.8	V	
NEO MOTE unosmola lovoi	MUTE-2	$MUTE\;ON\toMUTE\;OFF$	3.2		5.0	V	
REC PB threshold level	PB-REC	PB → REC *1	1.2		5.0	V	
REG I D allogitora level	REC-PB	$REC \rightarrow PB$	0.0		0.8	V	

Notes:* Before measuring the items under Playback Mode, input a 0 to 5.0 V trigger pulse to T11 (H-SYNC), the pin from which the LA70020 takes its T9 (HA) control switch timing.

* The resistance between pins 19 and 20 must be accurate to within 1.0%.

^{*1.} These are voltage application points.

*2. Apply a DC voltage of approximately 1.8 V to the AGC wave detector filter pin (pin 21) to fix the AGC amplifier gain.

*3. Apply a DC voltage to the REC-CUR-Adj pin (pin 18) and adjust the output level.

Electrical Characteristics at Ta = 25°C (Hi-Fi Circuits)

Parameter		Symbol	Conditions		Ratings		
		Symbol	Conditions	min	typ	max	Unit
Playback Mode							
Current drain		HI _{CCP}	Current flowing into pin 36	20	25	30	mA
Voltage gain	CH1	HG _{VP} 1	V _{IN} = 20 mVp-p, f = 1.5 MHz	72.5	75.5	78.5	dB
	CH2	HG _{VP} 2		72.5	75.5	78.5	dB
Voltage gain difference		ΔHG _{VP}	$HG_{VP}1 - HG_{VP}2$	-2	0	+2	dB
Intermode gain difference		ΔHGEP	Voltage gain difference between SP and EP modes. *1	1.7	2.4	3.1	dB
Converted input noise voltage	CH1 CH2	HV _{NIN1} HV _{NIN2}	Ratio of the output from a 1.1-MHz low pass filter to the output with no input under the same conditions as those used for measuring voltage gain.		0.8	1.2	μVrms
Frequency characteristic	CH1 CH2	ΔHV _{fp1} ΔHV _{fp2}	Ratios of the output for $V_{IN} = 20 \text{ mVp-p}$ and $f = 2 \text{ MHz}$ to the voltage gains $HG_{VP}1$ and $HG_{VP}2$.	-3	-1		dB
Secondary harmonic distortion	CH1 CH2	ΔHV _{HDP} 1 ΔHV _{HDP2}	Ratio of the 3-MHz (secondary) component of the output to its 1.5-MHz (primary) component for $V_{\rm IN}=20$ mVp-p and f = 1.5 MHz.		-50	-40	dB
Maximum output level	CH1 CH2	ΔHV _{OMP} 1 ΔHV _{OMP2}	Output level, for f = 1.5 MHz, at which the ratio of the 4.5 MHz (secondary) component to the 1.5 MHz (primary) component is –30 dB	2			Vp-p
Croostells CD		V _{HCR} 1	Ratio of the output for $V_{IN} = 20 \text{ mVp-p}$ and $f = 1.5 \text{ MHz}$ to $HG_{VP}1$.		-40	-35	dB
Crosstalk SP		V _{HCR} 2	Ratio of the output for $V_{IN} = 20 \text{ mVp-p}$ and $f = 1.5 \text{ MHz}$ to $HG_{VP}2$.		-40	-35	dB
0		V _{HCR} 3	Ratio of the output for $V_{IN} = 20 \text{ mVp-p}$ and $f = 1.5 \text{ MHz}$ to $HG_{VP}1$.		-40	-35	dB
Crosstalk EP		V _{HCR} 4	Ratio of the output for $V_{IN} = 20 \text{ mVp-p}$ and $f = 1.5 \text{ MHz}$ to $HG_{VP}2$.		-40	-35	dB
Output DC offset SP mode		ΔV _{ODC} 1	CH1 — CH2	-30	0	+30	mV
Output DC offset EP mode		ΔV _{ODC} 2	CH1 — CH2	-50	0	+50	mV
HA threshold level		H _{HAP-1}	SP → EP : *1	1.7		5.0	V
HA tilleshold level		H _{HAP-2}	$EP \to SP$	0.0		1.3	V
CW20 throshold lovel		H _{SW30-1}	Lch → Hch : *1	1.2		5.0	V
SW30 threshold level		H _{SW30-2}	Hch → Lch	0.0		0.8	V
SW-Tr on resistance during play	back	H _{RPON}	DC difference for 1 and 2 mA current inputs.		4	6	Ω
Recording Mode		•			•		•
Current drain		H _{ICCR}	Current input at pin 36.	55	65	75	mA
REC AGC AMP output level		H _{VOR}	Output level for $V_{IN} = 180 \text{ mVp-p}$ and $f = 1.5 \text{ MHz}$.	270	280	290	mVp-p
REC AGC AMP control characte	ristic	ΔHV _{AGC1}	Output level divided by HV $_{\rm OR}$ for f = 1.5 MHz and V $_{\rm IN}$ = 360 mVp-p.		0.2	0.5	dB
The office of the control of the con	REC AGC AMP control characteristic		Output level divided by HV $_{\rm OR}$ for f = 1.5 MHz and V $_{\rm IN}$ = 90 mVp-p.	-0.5	-0.2		dB
REC AGC AMP muting attenuati	ion	ΔHV_{MR}	Output level divided by HV_{OR} for f = 4 MHz and V_{IN} = 180 mVp-p.			-40	dB
REC AGC AMP cross modulation relative level for 0.4-MHz component		HCMD04	0.4-MHz component for T3A V_{IN} = 90 mVp-p, f = 1.3 MHz + V_{IN} = 270 mVp-p, f = 1.7 MHz.			-40	dB
REC AGC AMP cross modulation relative level for 0.9-MHz component		HCMD09	0.9-MHz component for T3A V_{IN} = 90 mVp-p, f = 1.3 MHz + V_{IN} = 270 mVp-p, f = 1.7 MHz.			-40	dB
REC MUTE threshold level		H _{MUTE1}	MUTE OFF → MUTE ON *1	1.2		2.8	V
VEO MOTE mission level		H _{MUTE2}	$MUTE\:ON\toMUTE\:OFF$	3.2		5.0	V
REC PB threshold level		PB-REC	PB → REC *1	1.2		5.0	V
VEO I D IIII GOII OIU IEVEI		REC-PB	$REC \rightarrow PB$	0.0		0.8	V

Note: These are voltage application points.

Pin Descriptions

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
1	HiFi PB-FM-OUT	РВ	2.6	100Ω ①-W-	
		REC	4.0	Ø √400 μ A 	
2 31	HiFi GND				
3	HiFi	РВ	0	300 Ω 5k Ω ————————————————————————————————————	
	REC-FM-IN	REC	3.0		
4	HiFi	РВ	0	10kΩ 100Ω 15kΩ 4 300Ω A09446	
	REC-AGC-Filt	REC	1.2		
5	HiFi REC-CURRENT-	РВ	0.7	200 µ A ↓ O	
	ADJ	REC	1.5	300 Q 7777 A09447	
6	HiFi RF-SW (REC-MUTE)			REC/MUTE 3.2V Comp 1V 50kΩ A0944B	SW30 MUTE ON Hch OFF Lch

Continued from preceding page.

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
7	TRICK-H			VCC 120kΩ Trick1 Comp Trick2 Comp A09449	Trick1 NORMAL 1.0 V Trick2
8	COMP-OUT	РВ	H: min. 4.5 V L: max. 0.7 V	100 Ω W	EP > SP ENV High
		REC	Open	1kΩ }	
9	HA (EP/SP)			100kΩ HA Comp 1.5V 1.5V 1.5V 1.5V 1.5V 1.5V	EP 1.0 V
10	SW30			10 1kΩ SW30 Comp 1V 1V 10 A09452	Hch Lch
11	H-SYNC			20kΩ HSYNC Comp 1.5V AD9453	SYNC H 1.5 V

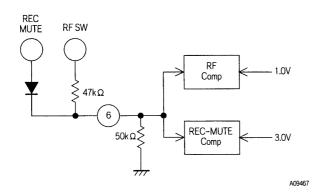
Continued on next page.

Continued from preceding page.

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes		
12		РВ	See relevant documents.	ΛVCC 100Ω			
12	ENVDET-OUT	REC	0	12 18kΩ ≯ A09454			
40	DD OUT	РВ	1.7	^Vcc 1ωΩ≹			
13	PB-OUT REC			0	13 ↓ 1mA A09455		
14 26	GND						
15	РВ			PE REC-Y-IN	0	(15) 300Ω 5kΩ	
.c		REC	3.7	A09456			
16	REC-C-IN	РВ	0	(B) 25kΩ 300Ω 5kΩ W			
		REC	3.7	300Ω 5kΩ 			
17	REC/MUTE/PB			REC/MUTE Comp 2.4V 17 - W - PB/REC Comp 0.8V 80k Ω - 777 A09458	REC 3.0 V REC MUTE 1.0 V PB		

Continued from preceding page.

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes				
18	10 REC-CURRENT-	РВ	2.5 V	√VCC 100kΩ 300Ω					
16	ADJ2	REC	2.5 V	18 100kΩ A09459					
19	V _{CC}								
20	REC-CURRENT-	РВ	5.0	3000					
20	ADJ1	REC	4.5	₹1.0kΩ,1.3kΩ 7777 A09460					
21	REC-AGC-FILT	РВ							
						REC	1.6	300Ω 20kΩ 600Ω ₹10kΩ 770 μ A	
22 25	SP L-IN SP H-IN	РВ	2.1	REC-ON VCC					
27 30	27 EP L-IN 30 EP H-IN	REC	4.1	PB-ON PB-ON A09462					
23 28	REC SP OUT EP OUT	PB 2.1	2.1	10kΩ 10kΩ					
		REC	4.1	PB-ON 16.7Ω 16.7Ω 16.7Ω 16.7Ω 16.7Ω 16.7Ω					

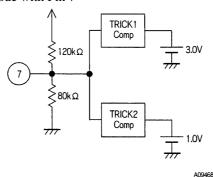

Continued from preceding page.

Pin Number	Pin Name	Stan	dard DC Voltage (V)	Equivalent Circuit	Notes
24 29	PB FILT	РВ	0	292934 ↑ \$20kΩ	
34	IBIILI	REC	2.5	PB-ON 20kΩ A09464	
32	HiFi PB-Lch-IN	РВ	2.1	REC-ON VCC	
35	PB-Hch-IN	REC	4.1	32 PB-ON PB-ON A09465	
33	HiFi	РВ	2.1	33 10kΩ 	
	REC-OUT	REC	4.1	2.4mA 777 777 16.7Ω	
36	HiFi V _{CC}		5.0		

Usage Notes

Control Pin Logic

HiFi RF-SW, REC-MUTE: Pin 6


During playback

Pin 6 level - DC < 1.0 V: Lch Pin 6 level - DC > 1.0 V: Hch

During recording

Pin 6 level - DC < 3.0 V: Mute off Pin 6 level - DC > 3.0 V: Mute on

Switching Video Trick Mode with Pin 7

GND < pin 7 level - DC < 1.0 V: TRICK2 1.0 V < pin 7 level - DC < 3.0 V: NORMAL 3.0 V < pin 7 level - DC < 5.0 V: TRICK2

NORMAL Mode

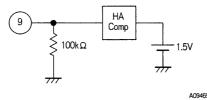
Two channels selected with pin 9 (EP/SP): ON

Envelope comparator: OFF

TRICK Modes

All four channels: ON Envelope comparator: OFF

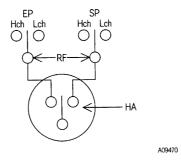
Difference between TRICK1 and TRICK2 modes


TRICK1 is a special playback mode using the following path

$$\boxed{\text{Envelope comparator OUT (pin 8)}} \rightarrow \boxed{\text{Servo (microcontroller)}} \rightarrow \boxed{\text{Pin 3 (HA)}} \rightarrow \boxed{\text{HA-SW}}$$

TRICK2 provides SP searching

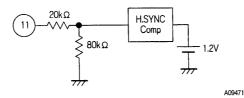
$$\boxed{\text{Envelope comparator OUT}} \rightarrow \boxed{\text{HA-SW}}$$


HA-SW (EP/SP mode switch): Pin 9

GND < pin 9 level - DC < 1.5 V: SP mode 1.5 V < pin 9 level - DC < 5 V: EP mode

Video Synchronization of HA Switching Timing during Playback with H-SYNC Signal

During playback, the LA70020's video circuits synchronize the HA-SW switching timing shown in the following figure with the H-SYNC signal from pin 11. (Other EP/SP switching takes place in real time.)



The hi-fi playback amplifier's gain is approximately 2.4 dB higher in EP mode than in SP mode.

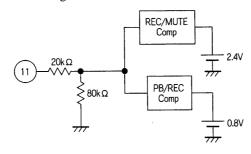
SP: 75.0 dB EP: 77.4 dB Comparator Output: Pin 8

EP envelope > SP envelope: High (min. 4.0 V) EP envelope < SP envelope: Low (max. 0.7 V)

H-SYNC Input: Pin 11

Pin 11 level - DC > 1.5 V: H-SYNC interval

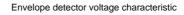
Video circuit operation only

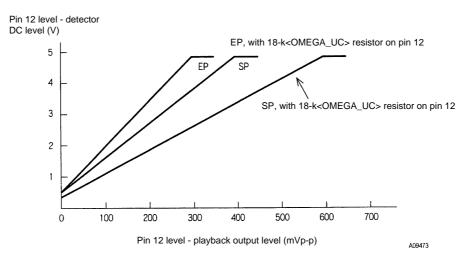

Playback:

- Determines timing of HA switching (EP/SP)
- Determines timing of special playback

Recording:

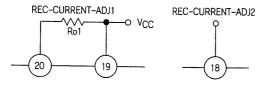
- Serves as gate pulse for REC-AGC-AMP SYNC unit


REC/REC-MUTE/PB Switching: Pin 17



A09472

Envelope Detector Characteristic: Pin 12


The LA70020 includes a built-in playback signal envelope detector circuit for use in automating tracking adjustment.

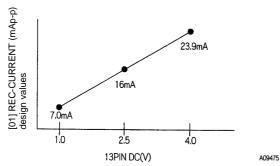
Video REC AMP Gain Control

The LA70020 eliminates recording current adjustment by adding an automatic gain control circuit to the recording amplifier. It is also possible to change the recording current with the following methods.

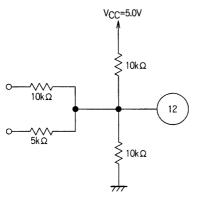
A09474

REC-CURRENT-ADJ2 Open

The internal bias forces the DC level at pin 18 to $1/2~V_{CC}$ (that is, approximately 2.5 V), and $R_{O}1$ determines the recording current.

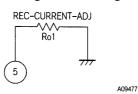

Design values

 $R_O 1 = 1.5 \text{ k}\Omega = 16.0 \text{ mA (SP) (per channel)}$


 $R_{O}1 = 1.5 \text{ k}\Omega = 12.7 \text{ mA (EP)}$

REC-CURRENT-ADJ2 Used

Applying a DC control voltage between 1 and 4 V to pin 18 adjusts the figure determined by $R_{O}1$ between -6.0 dB and +3.5 dB.

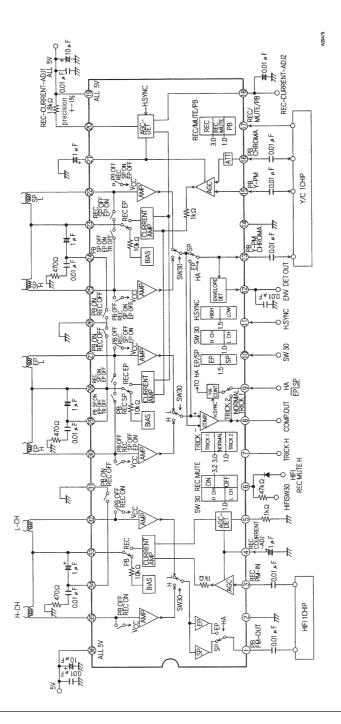

Note: One possible circuit for applying this voltage is the following, which provides 9 modes between 1 and 4 V.

Hi-Fi REC AMP Gain Control

The LA70020 eliminates recording current adjustment by adding an automatic gain control circuit to the recording amplifier. It is also possible to change the recording current with the following methods.

A09476

REC-CURRENT-ADJ


R_O1 determines the recording current.

Design values

 $R_O 1 = 1.0 \text{ k}\Omega = 24.0 \text{ mA (SP) (per channel)}$

 $R_{\Omega}1 = 1.5 \text{ k}\Omega = 16.0 \text{ mA (EP)}$

Block Diagram

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of February, 1998. Specifications and information herein are subject to change without notice.