Ordering number : EN 1775A85 円 应商 Monolithic Linear IC SANYO No.1775A LA7851 # CRT Display Synchronization Deflection Circuit The LA7851 is a sync deflection circuit IC dedicated to CRT display use. It can be connected to the LA7832,7833 (for vertical output use) to form a sync deflection circuit that meets every requirement for CRT display use. So far, ICs for color TV use have been applied to the sync deflection circuit for CRT display use and general-purpose ICs such as one-shot multivibrator, inverter and a lot of transistors have been used to form the peripherals such as sync input interface, horizontal phase shifter. The LA7851 contains these peripherals on chip, has a wide vertical pull-in range of 20Hz, and adopts a stable circuit for horizontal oscillation from 15kHz to 100kHz aiming at improving the characteristics required for CRT display use. #### **Features** - The vertical pull-in range 20Hz permits non-adjusting at vertical sync 50Hz/60Hz. - · The horizontal oscillation frequency can be adjusted stably from 15kHz to 100kHz. - · The horizontal display can be shifted right/left. - The horizontal/vertical sync input can be used intact regardless of the difference in pulse polarity and pulse width. - · The AFC feedback sawtooth wave can be obtained by simply applying a flyback pulse to the IC as a trigger pulse. - · Any duty of the horizontal pulse can be set. - · Good linearity because DC bias at vertical output stage is subjected to sampling control within retrace time. ## On-chip Functions [Horizontal Block] - ·AFC - · Horizontal OSC - · X-ray protector - · Horizontal phase shift - · AFC sawtooth wave generator - · Horizontal pulse duty setting #### [Vertical Block] - · Vertical OSC - · Vertical sawtooth wave generator - · Sampling type DC voltage control ### **Package Dimensions** (unit:mm) 3021B | | | L/\// UD | | | | | |--|-----------------------|---|-------------------------------|-----------------|-------------|-----------| | Maximum Ratings at Ta=25°C | | | | | unit | | | | V_{10} , V_{20} r | nax | | | 14 V | | | Allowable Power Dissipation | P_{d} max | Ta≦65°C | | | 80 mW | | | | Topr | | | -20 to + 8 | | | | Storage Temperature | Tstg | | | -55 to + 12 | | | | Operating Conditions at Ta = 25° | C | | | | unit | | | Recommended Supply Voltage | | | V_{10}, V_{20} | 19 | 2.0 V | | | Operating Voltage Range | | | V_{10}^{10}, V_{20}^{20} op | 9 to 13 | | | | Recommended Vertical Pulse Input Peak Value | | | V _{PULSE} | 5.0 Vp-p | | | | Operating Vertical Pulse Input Peak Value | | ie Range | V _{PULSE} | 2.0 to 6.0 Vp-p | | | | Recommended Horizontal Pulse Input Peal | | ık Value | HPULSE | | 5.0 Vp-p | | | Operating Horizontal Pulse Input Peak Value Range Hpulse | | | | 2.0 to 6.0 Vp-p | | | | Operating Characteristics at Ta= | = 25°C.V ₁ | $V_{00} = 12V$ | | min | | | | V _{CC10} Current Dissipation | I ₁₀ | .1, 22 12 1 | • | 112 | typ max | unit | | V _{CC20} Current Dissipation | \tilde{I}_{20} | | | 5 | | mA | | Vertical Frequency Pull-in Rang | | Vertical syn | c 60Hz | | 12 | mA | | Vertical Free-running Frequency | | fy center 551 | | 21.0 | 23.0 | Hz | | Increased/Reduced Voltage | • | | V,55Hz at 12V | 50 | 60 | Hz | | Characteristic of Vertical Freque | ncv | V 22 — 12 II I | V,UUIIZ AL 12 V | -0.1 | 0.1 | Hz | | Midpoint Control Threshold Leve | | | | 3.8 | 4.4 | 37 | | Vertical OSC Start Voltage | f _{V,st} | | | 0.0 | 4.4
4.0 | V | | Temperature Characteristic of | - v ,st | Ta = -10 to | +60°C | -0.028 | | | | Vertical Frequency | | 10 00 | 1 00 0 | -0.026 | 0.028 | HZ/ C | | [Vertical Driver | $G_{\mathbf{V}}$ | | | 12 | 10 | σι | | Amplification Factor | ₩ V | | | 12 | 18 | dB | | Horizontal AFC DC Loop Gain | I_{AFC} | | | ±0.85 | ±1 c | A | | Horizontal Free-running Frequen | nev fu | f _H center 15. | 734kHz | ±0.65
−750 | ±1.6
750 | mA | | Horizontal OSC Start Voltage | f _{H,st} | -n content to: | IO TRIIZ | -100 | | Hz | | Increased/Reduced Voltage | | $V_{11} = 12 \pm 1$ | 7,15.734kHz at 12V | -50 | 4.0 | V
II- | | Characteristic of Horizontal Freq | uency | V11 - 12-21 V | ,,10.10±K112 &t 12 v | -50 | 50 | Hz | | Horizontal OSC Warm-up Drift | Δf_{H} | 5s. to 30min. | | -50 | 50 | Hz | | • | 11 | | tion of power | -00 | 50 | ΠZ | | Temperature Characteristic of | | Ta = -10 to | <u>-</u> | -2.9 | 9.0 | Hz/°C | | Horizontal Frequency | | 2000 | | -2.5 | 4.5 | HZ/ C | | Horizontal Output Drive Current | I ₁₂ | | <i>t</i> | 6.0 | 12.0 | A | | Increased/Reduced Voltage | -12 | $V_{10} = 12 \pm 1$ | 7 | -0.5 | 0.5 | mA
%/V | | Characteristic of Phase Shifter | | 10 | | 0.0 | 0.5 | 701 V | | l Delay Time | | | • | | | | | Temperature Characteristic of | | Ta = -10 to + | ⊦60°C | -0.1 | 0.1 | %/°C | | Phase Shifter Delay Time | | | | 0.1 | 0.1 | 701 C | | Increased/Reduced Voltage | | $V_{10} = 12 \pm 1 V_{10}$ | 7 | -1.0 | 1.0 | %/V | | Characteristic of Phase Shifter | | 20 | | 2.0 | 1.0 | 101 4 | | Delay Time | | | , | | | | | Temperature Characteristic of | | Ta = -10 to + | +60°C | -0.13 | 0.13 | %/°C | | Phase Shifter Pulse Width | | 4 F MO 11 TT | | | | | | AFC Phase Comparison Center To
Increased/Reduced Voltage | ıme | | fter F.B.P. input | 9.9 | 11.5 | μs | | Characteristic of AFC Phase | | $V_{10}=12\pm1V$ | | -1.5 | 1.5 | %/V | | | | | | | | | | Comparison Center Time | | m 46. | | | | | | Temperature Characteristic of AFC Phase Comparison Center To | · | Ta = -10 to + | -60°C | -0.2 | 0.2 | %/°C | | Comparison Waveform Generating | ime | | | . - | | | | Input Operation Voltage | 15 V 4 | | | 0.6 | 0.9 | V | | Pin 13 Voltage at Hold-down | V_{13} | | | A F | | | | Operation Start | v 13 | | | 0.5 | 0.8 | V | # Equivalent Circuit Block Diagram Sample Application Circuit: 14" Color Monitor/fy = 60Hz, fH = 15.734kHz is 10Hz at vertical sync 60Hz. Unit (resistance: Ω, capacitance: F) - No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss. - Anyone purchasing any products described or contained herein for an above-mentioned use shall: - Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use: - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties. This catalog provides information as of June, 1996. Specifications and information herein are subject to change without notice.