查询LB11880供应商

捷多邦,专业PCB打样工厂,24小时加急出货

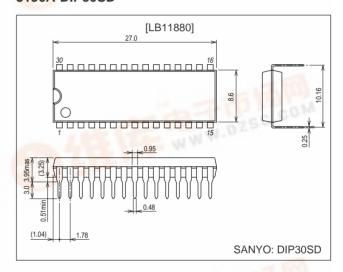
Ordering number : ENN6470

Monolithic Digital IC

LB11880

Three-Phase Sensorless Motor Driver with Loading Motor Driver

Overview


The LB11880 is a sensorless motor driver that also includes a loading motor driver. It is ideal for drum motor drive in VCR products.

Functions and Features

- · Soft switching drive
- No Hall sensors required
- No FG sensors required
- Built-in PG amplifier
- Built-in thermal shutdown circuit
- Current limiter circuit
- On-chip loading motor driver

Package Dimensions

unit: mm 3196A-DIP30SD

Specifications Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} max		14.5	V
Maximum supply voltage 2	V _{CC} L max		14.5	V
Maximum supply voltage 3	VREG max		7.0	V
Output voltage	Vomax	1.00	14.5	V
Input voltage	VI1max		-0.3 to VREG + 0.3	V
Cylinder current	lomax		1.0	A
Loading current	Iomax (AVE)		0.4	A
Loading current	lomax (peak)		1.2	A
Allowable power dissipation	Pdmax	When mounted on the specified printed circuit board*	2.8	W
Operating temperature	Topr	- E	-20 to +75	°C
Storage temperature	Tstg	100 100	-55 to +150	°C

Note: * Specified printed circuit board: 114.3 × 76.1 × 1.6 mm glass-epoxy board

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LB11880

Allowable Operating Ranges at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC}		8 to 13.8	V
Supply voltage 2	V _{CC} L		8 to 13.8	V
Supply voltage 3	VREG		4 to 6	V

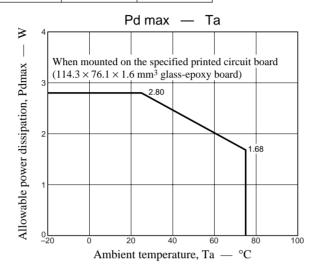
Electrical Characteristics at Ta = 25° C, V_{CC} = V_{CC}L = 12 V, VREG = 5 V

Decemeter	Cumbal	Conditions		Ratings		
Parameter	Symbol	Symbol		min typ		Unit
Supply current 1	Icc	VC = 0 V, XIN = YIN = 0 V		3.5	5.0	mA
Supply current 2	I _{CC} L	VC = 0 V, XIN = YIN = 0 V			1	mA
Supply current 3	I _{REG}	VC = 0 V, XIN = YIN = 0 V		10	15	mA
Output saturation voltage 1	V _O sat1	IO = 0.4 A, source + sink		1.4	2.0	V
Output saturation voltage 2	V _O sat2	IO = 0.8 A, source + sink		1.8	2.6	V
MC pin common-mode input voltage range	VIC		0		V _{CC} – 2	V
VC pin input bias current	I _{VC}	VC = 0 V	-2	-1		μA
Control start voltage	VTHVC	VRF = 10 mA	2.4	2.5	2.6	V
Closed-loop control gain	GMVC	RF = 0.5 Ω	0.75	0.95	1.15	A/V
PCOUT output current 1	I _{PCO} U	Source side		-90		μA
PCOUT output current 2	I _{PCO} D	Sink side		90		μA
VCOIN input current	I _{VCO} IN	VCOIN = 5 V		0.1	0.2	μA
Minimum VCO frequency	f _{VCO} MIN	CX = 0.022 µF, V _{CO} IN = open		400		Hz
Maximum VCO frequency	f _{VCO} MAX	CX = 0.022 μF, V _{CO} IN = 5 V		18.5		kHz
C1/C2 source current ratio	R _{SOURCE}	IC1SOURCE/IC2SOURCE	-12		+12	%
C1/C2 sink current ratio	R _{SINK}	I _{C1SINK} /I _{C2SINK}	-12		+12	%
C1 source/sink current ratio	RC1	IC1SOURCE/IC1SINK	-35		+15	%
C2 source/sink current ratio	RC2	IC2SOURCE/IC2SINK	-35		+15	%
Thermal shutdown operating temperature	T-TSD	*	150	180	210	°C
Thermal shutdown hysteresis	ΔTTSD	*		15		°C

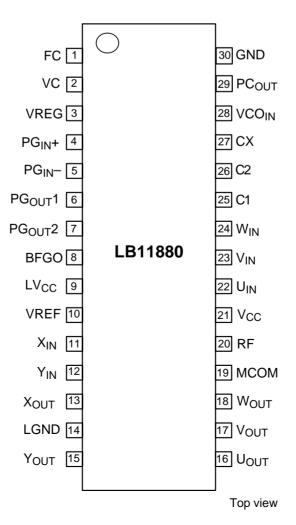
Note: * These values are design guarantee values, and are not tested.

FG/PG Amplifier Block at Ta = 25°C, V_{CC} = $V_{CC}L$ = 12 V, VREG = 5 V

Parameter	Sumbol	Conditions	Ratings			Unit	
Parameter	Symbol Conditions -		min	typ	max	Unit	
[Back EMF FG]							
Output on voltage	V _O L				0.4	V	
Output off voltage	V _O H		4.5			V	
[PG Amplifier]							
Input offset voltage	VIO		-8		+8	mV	
Input bias current	I _B IN–		-250			nA	
Common-mode input voltage range	VICOM	*	1		3.5	V	
Open-loop gain	GVPG	f = 1 kHz		55		dB	
Output on voltage	V _O L				0.4	V	
Output off voltage	V _O H		4.5			V	
Schmitt amplifier hysteresis	V _S hys		70	93	115	mV	

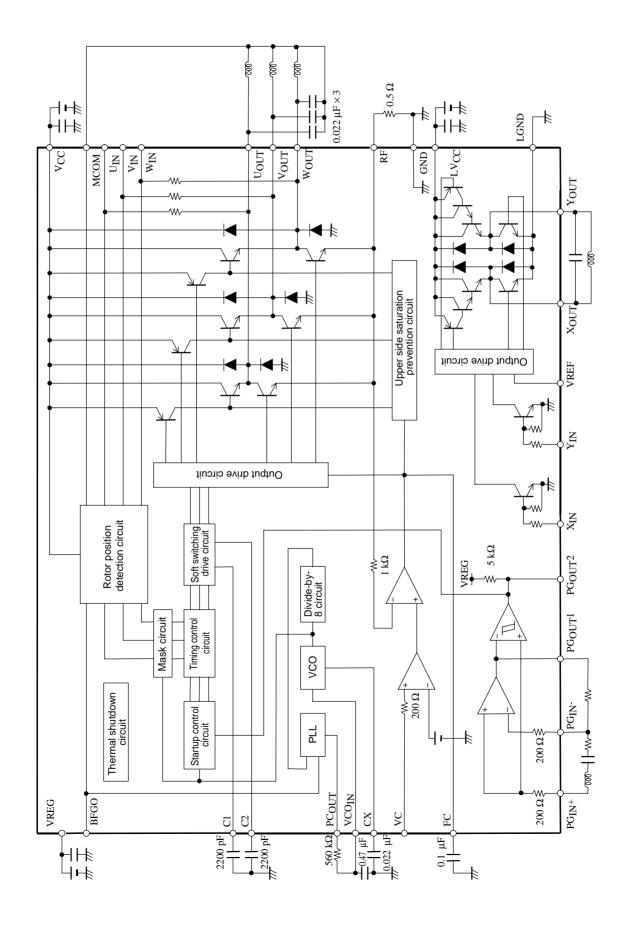

Note: * These values are design guarantee values, and are not tested.

Loading Block at Ta = 25°C, $V_{CC} = V_{CC}L = 12 V$, VREG = 5 V


Deremeter			mhal	Conditions		Ratings		
Parameter		Syr	Symbol Conditions –		min	typ	max	Unit
Input voltage	1 (high)	V	IN ¹		3.5		5	V
input voltage	2 (low)	V	IN2		0		0.8	V
Input current			IN	Sink V _{IN} = 3.5 V		30	50	μA
Input hysteresis		Δ	VT			0.7		V
		Vsa	t U-1	Vref = VS, between the output and VS $I_O = 0.2 A$, CW/CCW mode		1.5	2.1	V
Saturation voltage		Vsa	it L-1	Vref = VS, between the output and ground $I_O = 0.2 A$, CW/CCW mode		0.2	0.3	V
		Vsat U-1'		Vref = VS, between the output and VS $I_O = 0.4$ A, CW/CCW mode		1.6	2.2	V
			t L-1'	Vref = VS, between the output and ground $I_O = 0.4$ A, CW/CCW mode		0.3	0.5	V
Upper side residual voltage		Vsa	tU-1"	Vref = 8 V, between the output and ground $I_O = 0.2 A$, CW/CCW mode	7.2	8.0	8.8	V
		Vsa	tL-1"	Vref = 8 V, between the output and ground $I_O = 0.4 A$, CW/CCW mode	7.2	8.0	8.8	V
Output transistor leakage current		Upper	ILU				50	μA
		Lower	ILL				50	μA
Diada forward valtage			VFU	IF = 0.4 A		1.3		V
Diode forward voltage		Lower	VFL	IF = 0.4 A		1.0		V
Control supply current		li	ref		-5	-2		μA

Loading Motor Truth Table

Ir	nput	Ou	Mode	
X _{IN}	Y _{IN}	X _{OUT}	Y _{OUT}	wode
L	L	Off	Off	Standby
н	L	н	L	Forward
L	н	L	н	Reverse
Н	Н	L	L	Brake



Pin Assignment

LB11880

Pin Description

Pin No.	Pin	Pin voltage	Function	Equivalent circuit
1	FC		Frequency characteristics compensation Oscillation in the current control system closed loop can be prevented by connecting a capacitor between this pin and ground.	VREG 1 kΩ 10 kΩ \$5 kΩ
2	VC	0 V to VREG	Speed control This circuit implements constant-current control in which current feedback is applied from the RF system.	V _{CC} 50 μA 50 μA 27 kΩ 40 kΩ 200 Ω 200 Ω 7/7 7/7 7/7 7/7 7/7
3	VREG	4 V to 6 V	Control system power supply This power supply must be stabilized so that ripple and noise do not enter the IC.	
4	PG _{IN} +		PG amplifier plus side input This pin is biased to 1/2 VREG internally.	VREG 6 μA 6 μA 6 μA 5 10 kΩ
5	PG _{IN} -		PG amplifier minus side input	200 Ω 5 10 kΩ
6	PG _{OUT} 1		PG amplifier linear output	60 μA 30 μA 38 Ω 5 kΩ 4 4

Continued from preceding page.

Pin No.	Pin	Pin voltage	Function	Equivalent circuit
7	PG _{OUT} 2		PG Schmitt amplifier output	VREG+VF- 100 μA(ψ) \$5 kΩ VREG
8	BFGO		Motor back EMF voltage detection FG output (synthesized from three phases)	
9	LV _{CC}	8 to 13.8 V	Loading motor driver output transistor power supply	
10	VREF	0 to V _{CC} L	Loading motor driver output voltage setting	Image: Weight of the second
11	X _{IN}			VREG
12	Y _{IN}	U V IO VREG	Loading motor driver logic input	12 50 κΩ 50 κΩ 50 κΩ
13	X _{OUT}		Loading motor driver output	9 (13)(15)
15	Y _{OUT}			
14	LGND		Loading motor driver output transistor ground	

Continued on next page.

Continued from preceding page.

Pin No.	Pin	Pin voltage	Function	Equivalent circuit
16	U _{OUT}	gr		
17	V _{OUT} Wout		Drum motor driver output	VCC 3.9 Ω 10 kΩ 20 μA
20	RF		Lowest potential of the drum motor driver output transistor This IC implements constant-current control by detecting this voltage. The current limiter also operates by detecting this voltage.	$\begin{array}{c} 30 \text{ k}\Omega \\ \hline 3.9 \Omega \\ \hline 3.9 \Omega \\ \hline 30 \text{ k}\Omega \\ \hline 20 \end{array} \begin{array}{c} 16 \\ 17 \\ 17 \\ 18 \\ 24 \end{array} \begin{array}{c} 22 \\ 777 \\ 777 \\ 18 \\ 24 \end{array}$
21	V _{CC}	8 to 13.8 V	Internal reference voltage and power supply for both the drum motor driver output block and the coil waveform detection circuit.	
19	МСОМ		Motor coil center input The coil voltage waveform is detected with this voltage as the reference.	
22	U _{IN}			$\begin{array}{c} (22) \\ (23) \\ (24) \\ (24) \\ (24) \end{array} \xrightarrow{10 \text{ k}\Omega} \\ (26) \\ ($
23	V _{IN}		Coil waveform detection comparator input Each phase output is connected by an internal $10 \ k\Omega$ resistor.	
24	W _{IN}			
25	C1		Triangular wave generating capacitor connection	15 μA 15 μA 25 5 μA VREG
26	C2		This triangular wave is used to implement soft switching in the coil output waveform.	1 KΩ 1/2VREG -VF
27	сх		The value of the capacitor connected between this pin and ground determines the operating frequency range and the minimum operating frequency of the VCO circuit.	VREG 100 μA 300 Ω (27) ////////////////////////////////////

Continued on next page.

Pin No.	Pin	Pin voltage	Function	Equivalent circuit
28	VCOIN		VCO circuit voltage input The PCOUT pin voltage is filtered by an RC circuit and input to this pin.	10 kΩ 1.75 V 28 50 kΩ 50 μA 50 μA
29	PC _{OUT}		VCO circuit PLL output	VREG 29
30	GND		Ground for all circuits other than the drum and loading driver output transistors.	

Continued from preceding page.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 2000. Specifications and information herein are subject to change without notice.