Ordering number : ENN6656A

Monolithic Digital IC

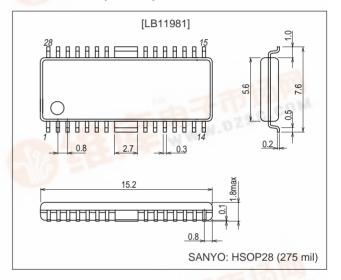
Three-Phase Sensorless Motor Driver

Applications

Refrigerator fan motors

Features

- No Hall sensors required.
- No FG sensors required.
- Lock detection circuit (Can be set to operate in either automatic recovery or latching mode.)


WW.DZSC.CO

- · Thermal shutdown circuit
- · Current limiter circuit
- · Low-voltage shutdown circuit
- Forward/reverse switching
- Supports both single- and dual-power supply circuits.

Package Dimensions

unit: mm

3222-HSOP28 (275 mil)

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC} max		30	V
Supply voltage 2	V _{CC} max	Power supply for output stage	30	V
Applied output voltage	V _O max	D-DM	30	V
Applied input voltage	V _I max		-0.3 to V _{CC} + 0.3	V
Maximum output current	I _O max		1.0	А
Allowable power dissipation	Pdmax	Independent IC	0.5	W
Operating temperature	Topr		-20 to +75	°C
Storage temperature	Tstg		-55 to +150	°C

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained

SANYO Electric Co., Ltd. Semiconductor Company TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110-8534 JAPAN

LB11981

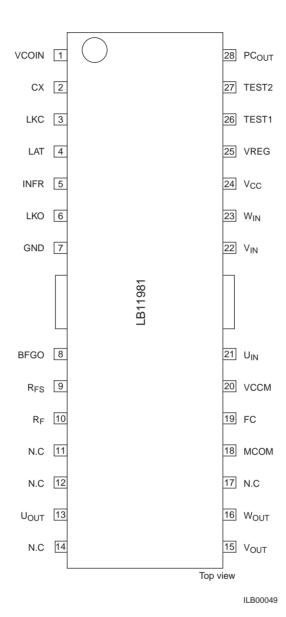
Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC}		*8 (5) to 28	V
Supply voltage 2	V _{CC} M		8 to 28	V

Note: * This device should normally be used with $V_{CC} \ge 8 \text{ V}$. If used with $5 \text{ V} \le V_{CC} < 8 \text{ V}$, short the V_{CC} and V_{REG} pins together. Note that in this case the electrical characteristics of the device become more easily influenced by fluctuations in the V_{CC} supply voltage.

Electrical Characteristics at $Ta = 25^{\circ}C$, $V_{CC} = V_{CCM} = 18~V$

Parameter	Symbol	Conditions		Ratings	atings	
Farameter	Symbol	Conditions	min	typ	max	Unit
Supply current 1	ICC		8.8	11	13.2	mA
Supply current 2	I _{CCM}	LKC = 5 V	480	600	720	μΑ
Internal power supply	V _{REF}		4.75	5.0	5.25	V
Internal supply load regulation	ΔV_{REF}	ILOAD = -5 mA		30	50	mV
Output saturation voltage 1	V _{OSAT} 1	IO = 0.4 A, Source + Sink		1.4	1.7	V
Output saturation voltage 2	V _{OSAT} 2	IO = 0.8 A, Source + Sink		2.0	2.4	V
MCOM pin common-mode input voltage range	V _{IC}		0		V _{CC} – 2	V
PCOUT pin output current 1	IPCOU	Source side	-120	-100	-80	μΑ
PCOUT pin output current 2	IPCOD	Sink side	80	100	120	μΑ
VCOIN pin input current	IVCOIN	VCOIN = 4 V		1	2	μΑ
Minimum VCO frequency	fVCOmin	VCOIN = open	0.85	1	1.15	kHz
Maximum VCO frequency	fVCOmax	VCOIN = 5 V	36	42	48	kHz
Maximum CX pin charge/discharge current	Icxmax	VCOIN = 5 V	550	650	750	μΑ
Minimum CX pin charge/discharge current	Icxmin	VCOIN = open	11	14	17	μΑ
Thermal shutdown circuit operating temperature	TTSD	Design target value *	150	180	210	°C
Thermal shutdown circuit hysteresis	ΔTTSD	Design target value *		15		°C
BFGO pin output saturation voltage	VsatFG	ILOAD = 1 mA		0.2	0.4	V
[Lock Detection Circuit]						
LKC pin voltage threshold	Vth		3.7	4	4.3	V
Threshold level hysteresis	ΔVth		1.8	2	2.2	V
LKC pin charge current	Ichg	V (LKC) = 0 V	0.8	1	1.2	μΑ
LKC pin discharge current	Idis	V (LKC) = 4.2 V	0.52	0.65	0.78	μA
LAT pin input current	ILAT	V (LAT) = 0 V, V (LKC)= 4.2 V	3.2	4	4.8	μA
LKO pin saturation voltage	VsatLKO	ILOAD = 1 mA, V(LKC) = 4.2 V		0.2	0.4	V
[Low-Voltage Cutoff Circuit]						
Low-voltage detection voltage	VT	VREG pin detection	38	4	4.2	V
Hysteresis	ΔVF		150	180	210	mV
[Forward/Reverse Circuit]	[Forward/Reverse Circuit]					
INFR pin input current	IINFR	V (INFR) = 5 V	38	43	48	μA
INFR pin high-level input threshold voltage	VINH		3.0			V
INFR pin low-level input threshold voltage	VINL				1.0	V


Note: * Design target values are not tested.

LB11981

Pin Functions

Pin No.	Pin	Function	
1	VCOIN	VCO circuit voltage input. Inputs the PCOUT pin voltage filtered by an RC circuit.	
2	СХ	The value of the capacitor between this pin and ground determines the operating frequency range and the minimum operating frequency of the VCO circuit.	
3	LKC	Connection for the lock detection circuit capacitor. The value of the capacitor between this pin and ground determines the lock state monitoring period. The lock detection circuit can be disabled by connecting this pin to ground.	
4	LAT	Lock detection circuit mode switching input	
5	INFR	Forward/reverse switching input	
6	LKO	Lock state detection signal. (A pull-up resistor is required.)	
7	GND	Ground	
8	BFGO	Motor back electromotive force detection FG output (3 phases combined). (A pull-up resistor is required.)	
9	R _{FS}	Current limit sensing. The output current can be detected and current limiting applied by connecting this pin to the RF pin.	
10	R _F	Lowest potential of the motor driver output transistor. The value of the resistor between this pin and ground determines the current that flows in the output transistor.	
11, 12, 14	N.C	Not connected	
13	U _{OUT}		
15	V _{OUT}	Motor driver output	
16	W _{OUT}		
17	N.C	Not connected	
18	MCOM	Motor coil midpoint input. The coil voltage waveform is detected using this voltage as the reference level.	
19	FC	Frequency characteristics correction. Closed loop oscillation in the current control system can be stopped by inserting a capacitor between this pin and ground.	
20	V _{CCM}	Motor drive output stage power supply	
21	U _{IN}	Coil waveform detection comparator input	
22	V _{IN}	· · ·	
23	W _{IN}	These are connected to the outputs for each phase through internal 10 kΩ resistors.	
24	V _{CC}	Power supply	
25	V _{REG}	Internal 5 V regulator output	
26, 27	TEST	Test pin. This pin must be left open during normal operation.	
28	PC _{OUT}	V _{CO} circuit PLL output	

Pin Assignment

Truth Tables

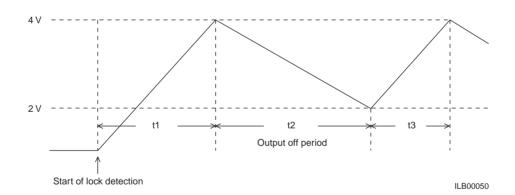
Pin 4 (LAT): Lock detection circuit mode switching

LAT	Mode	
OPEN	Automatic recovery mode	
"L"	Output latched in the off state when lock detected.	

Pin 5 (INFR): Motor rotation direction switching

INFR	Mode
OPEN or "L"	Forward
"H"	Reverse

Pin 3 (LKC): Lock detection time setting capacitor connection


LKC	Mode
GND	Disabled
Capacitor inserted	Enabled

Pin 6 (LKO): Lock state detection signal (A pull-up resistor is required.)

LKO	State
"H"	Lock not detected
"L"	Lock detected

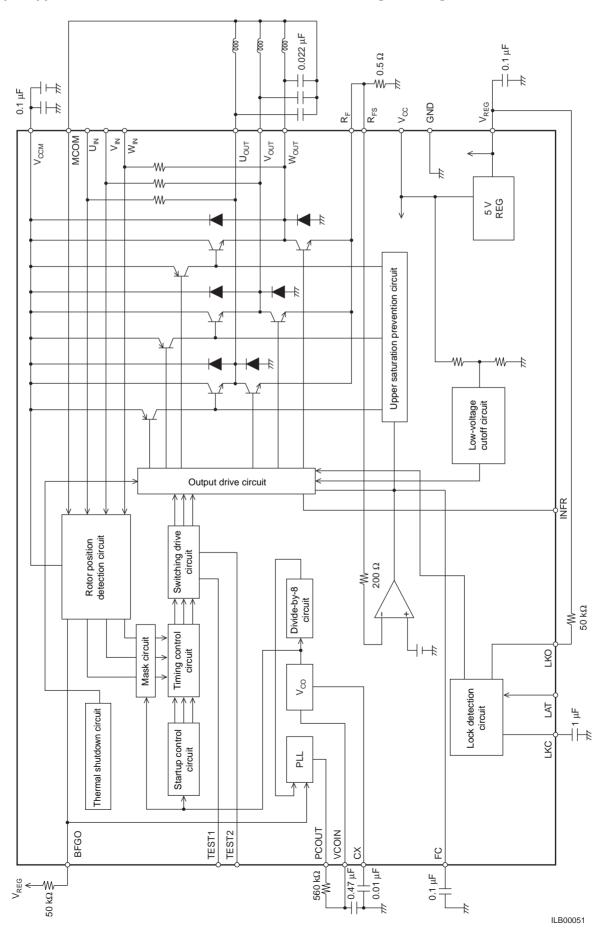
Lock Detection Time Setting (automatic recovery mode)

[LKC pin]

The following formula gives the time, t1, from the point the motor speed is locked until the output is turned off.

$$t1[s] = C [\mu F] \times 4 [V] / 1 [\mu A]$$

The output off time, t2, is as follows.


$$t2[s] = C [\mu F] \times 2 [V] / 0.65 [\mu A]$$

The time, t3, following the output off state until the motor speed locked state is monitored, is as follows.

$$t3[s] = C [\mu F] \times 2 [V] / 1 [\mu A]$$

When pin 4 (LAT) is low (output off latching mode), after the t1 period lock state monitoring, the output is turned off and the output is held in the off state until either the V_{CC} or $V_{CC}M$ power supply is switched.

Sample Application Circuit (Note that the values of the external components depend on the motor used.)

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of April, 2001. Specifications and information herein are subject to change without notice.