Monolithic Digital IC

SANYO

No.1367B

LB1247

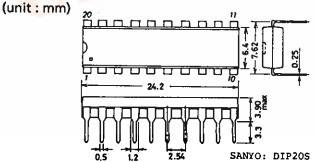
Active-Low Input,8-Unit, High-Current, Low-Saturation Driver

The LB1247 is a low active input type 8-unit driver array with high current, low saturation output.

Applications

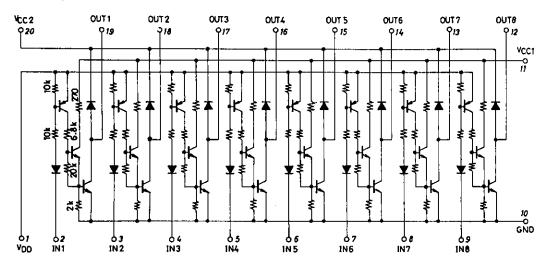
- . 4-phase stepping motor driver of 2 channels.
- . Especially suited for X-Y axis plotter printer driver.
- High current, low saturation voltage general-purpose 8-unit driver (relay, LED, lamp solenoid, etc.)

Features

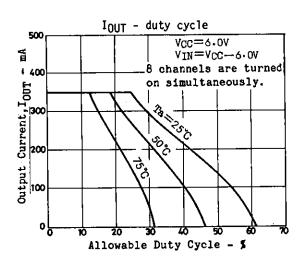

- . Low active input type.
- . Input protecting diodes.
- . High current capacity (400mA) and low saturation voltage (0.5Vmax).
- . With spark killer diodes.

Į	bsolute Maximum Ratings at T	a=25°C			unit
	Maximum Supply Voltage	VCC1,	2max	-0.3 to $+7.0$	v
	Output Supply Voltage	VOUT	_	-0.3 to $+10.0$	v
	Input Supply Voltage	VIN	GND≦V _{TN}	$V_{\rm DD}$ -7.0 to $V_{\rm DD}$ +15	v
	Output Current	IOUT	Per unit	400	mA
	Spark Killer Diode	IFSM	Pulse width≤35ms	400	mA
	Forward Current	. 01.	duty 5%		
	GND Pin Current	IGND	Pulse width ≤35ms	3000	mA
	Instantaneous Current	ICCP	Pulse width≤35ms	3000	mA
	Dissipation		duty 5%	1	
	Allowable Power Dissipation	Pdmax		1130	mW
	Operating Temperature	Topr		-20 to +75	°C
	Storage Temperature	Tstg		-40 to +125	°C

Allowable Operating Conditions at Ta-250C


unit
V
ν
V
V

Package Dimensions 3021B-D20SIC



Electrical Characteristics at Ta=25°C, VDD=VCC1=VCC min typ						
Output Voltage	V _{OUT1}	V _{CC} =2.3V, V _{IN} =V _{CC} -2.3V, I _{OUT} =200mA		0.4	V	
Output Voltage	V _{OUT2}	V _{CC} =3.5V, V _{IN} =V _{CC} -3.0V, I _{OUT} =200mA		0.25	V	
Output Voltage	V _{OUT3}	V _{CC} =6.0V, V _{IN} =V _{CC} -5.5V, I _{OUT} =400mA		0.5	V	
Output Sustain Voltage	V ₀ (sus)	I_{OUT} =400mA, t\[\frac{1}{2}10usec\] 10			V	
Input Current	ITN	$V_{TN} = V_{CC} - 6.0V, I_{OHT} = 0$ -1.0			mA	
Supply Leakage Current	ICC(OFF)	$V_{CC}^{IR} = 6.0V, V_{IN} = V_{CC}^{IR}$		20	μA	
Output Leakage Current	OFF	$V_{OUT} = V_{CC} = 6.0V, V_{IN} = V_{CC} = 0.7V$		100	μA	
Spark Killer Diode Forward Voltage	V _{F(S)}	$I_{F(S)} = 400 \text{mA}$		3.0	V	
Spark Killer Diode Reverse Current	I _{R(S)}	V _{OUT} =0V, V _{CC2} =6.0V		30	μA	

Equivalent Circuit

Unit (resistance: Ω)

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.